CS294-6 (Fall 2004) Recognizing People, Objects and Actions Lecture: February 17, 2004

Digit Recognition and Distance Transforms

Lecturer: Jitendra Malik

Scribe: Roger Bock

Digit Recognition

- Shape Context Deformable Template Nearest Neighbor
 - Find correspondences
 - Align using TPS (Thin Plate Splines)
 - Use nearest neighbor classifier
 - Need to have distance function
 - Shape context distance between corresponding points
 - Appearance distance between corresponding points
 - Use blocks of pixels i.e. 3x3 or 5x5
 - Bending energy
 - Sum distances over all points
 - Use weighted combination of three different metrics (α , β , and γ)
 - How do we tune the parameters?
 - Cross validation
 - Split your data into training data and testing data
 - Try different choices of parameters on training data
 - Quantize the parameter values and do a search
 - Performance is judged using testing data
 - Using same data for training and testing sets is cheating
 - Nearest neighbor classifiers
 - K nearest neighbor classifiers
 - Pick the k nearest (1-NN, 3-NN, 5-NN) and then have a majority vote from among them.
 - o 10,000 digit test set
 - o .63% error rate
 - **Convolutional Neural Nets**
 - o .82% error rate
- Tangent Distance Nearest Neighbor
 - Different data set, but similar error rate
- Support Vector Machines
 - DeCoste and Scholkopf
 - Paper on course website
 - Virtual support vectors
 - o .56% error rate
- Decision Trees
 - Decision trees are classifiers
 - Work by having a test that is a function of the features

- Test returns either true or false
- Take appropriate branch
- Another test on features

Ο

- At some point you have a leaf where there is no more testing to be done
- At this point you make the decision, i.e. this is the digit '3'.
 - Alternately you could state probabilities: Pr('5') = .7, Pr('2') = .1, Pr('4') = .2, others zero
- Using tree is easy, implement tests, keep traversing tree until you hit a leaf
 Very fast
- Cost is expected cost of test times number of levels in the tree How do we train a decision tree (in general)?
 - For training a decision tree we have a whole bunch of training examples
 - Each example looks like $\langle f_0, f_1, f_2, ..., f_{10}, y \rangle$ where y is a class label.
 - Ideal test is one where all chairs would go down one branch and all nonchairs go down opposite branch.
 - By the time you hit a leaf you should have as close to having "pure" subsets as possible
 - Pure meaning all at leaf are of one type
 - How do we measure purity/impurity?
 - Entropy
 - \sum (Pi * log(Pi)) for i=1 to k where k is the number of classes
 - Let's say for entire data set we have entropy H₀
 - After asking question the data is split into D⁺ and D⁻
 - Figure out entropy for D⁺ and D⁻
 - Entropy after split is $\alpha * H(D^+) + (1-\alpha) * H(D^-)$
 - Entropy reduction = $H_{before} H_{after}$
 - Also referred to as information gain.
 - Pick tests that maximize entropy reduction at each stage
 - Greedy technique, at each stage look for best test
 - Infinite set of tests!

- Use axis parallel cuts to reduce number of possible tests
- i.e. $f_0 > 0$?
- Other possible tests include comparison to stored prototypes tests can be anything you want
- What kinds of tests make sense for vision?
 - Look for specific arrangement of pixel values in certain geometric configuration with each other
 - Tags
 - Think of as a local edge
 - Description of local image window
 - o i.e. horizontal edge, vertical edge, endpoint, etc.
 - Arrangements
 - o Between local image patches
 - Quantize orientations into eight possibilities
 - Each zone is 360 / 8 = 45 degrees in size no overlap

- Can say things like Patch2 is northeast of Patch1 and Patch3 is east of Patch1
- o Also can look at distances, or ratios of distances
- How pick tags?
 - A decision tree is used to pick the tags
 - 4x4 pixel window
 - Classify all possible 4x4 pixel windows into tags
 - Dealing with binary black and white images
 - Want tags to be discriminative
 - Split using entropy without taking into account label of category i.e. which tag splits data most equally?
 - A given pixel can belong to more than one tag all the ones from its leaf where all 16 pixel values are specified to the root node where only 1 pixel value is specified
 - Tags end up being edges or terminators
 - Typically, only go four levels down no more than four pixels constrained, rest are don't care
- An aside consider all possible binary images with 3x3 windows
 - 2⁹ possible windows
 - What windows do you see most often?
 - o All white and all black
 - Most of the world is boring
 - Next most common will be edges
 - Next most common will be corners
 - o Least common will be checkerboard pattern
 - For handwriting recognition, this distribution was tuned to data
- Why not use simple edge detectors?
 - "Learning chauvinists" don't want to build in any knowledge
- Relations are quantized between pair of tags, just one of eight relative orientations
- Questions will be of the form, "Is there any instance of this specific tag arrangement in the image?" i.e. Tag type 4 and 3 north of tag type 1 and tag type 2 southwest of tag type 1
- Now we have a computational complexity problem
 - 62 possible tags
 - Top level has 62*62*8
 - Concept of minimal extension
 - Each child test is an extension of the test you already have
 - Add an edge, or another tag to the previous test
 - Even with this computational complexity is quite high
 - Randomized decision trees
 - Don't try to find single best decision tree
 - Use only part of the data to come up with the decision tree
 - Build up many different decision trees
 - Each tree is noisy

- Best decision tree had error rate of 7%
 - o Average error rate of 10%
- Average predictions of all the decision trees
- Aggregate classifier had error rate of under 1%
- Similar to "committee of experts" work
 - Build up good estimator from lousy estimators as long as errors are uncorrelated
 - Errors are uncorrelated here because the different trees used different training data
- o Generalization
 - 3x3 windows aren't fully specified they have don't care pixels
 - Range of possible angles and distances allowed for by arrangements
- o Order Structure
 - Work by Carlsson and Sullivan
 - Given four points and four lines (one through each point)
 - Each point has some relation to each line (left side vs. right side)
 - Defining relationships between points and lines
 - A small perturbation of diagram won't change description
 - Big perturbations will
 - Related to the idea of rank from statistics
 - Largest number gets N, smallest gets 1
 - Tests are done on rank, instead of actual number.
 - Much more robust
 - This is for a line
 - In a plane or in 3D, becomes harder
 - Order structure is the attempt to do rank in 2D
- Different data set, but similar error rate

Distance Transforms

0

- Chamfer Distance
 - Proposed in 1977 by Barrow et al
 - Want to match to images to each other
 - Their application was matching images from an airplane with images from maps
 - o Want to align to boundaries to each other
 - o Different types of data, one is an image, other is lines on a map
 - Can't just do SSD
 - o Run edge detector to get contours
 - How align the two shapes?
 - One shape is projection of 3D shape.
 - Fiddle with parameters to get two curves to line up
 - Fundamentally different from correspondence based approach
 - Correspondence based approach tries to find best match for every point
 - o Distance based, just find closest point in other set
 - For each point on one curve, measure distance to closest point in other set
 - Distance is zero at intersections
 - How do we aggregate distances?

- Take average?
- Take maximum?
- Consider straightforward version where we take some kind of average
- One curve is fixed, other curve is swung around until it lines up best
- o Precomputation on fixed curve
 - Auxiliary array D(x,y) over whole image where D(x,y) is distance to nearest edge point
 - Values are zero along contour
 - Perpendicular to edge, values will go ..., 3, 2, 1, 0, 1, 2, 3, ...
 - Back in the day they had to use integers, so we double everything to avoid real numbers, take 1.5 as approximation of $\sqrt{2}$, and get a basic pattern of:
 - $\begin{array}{c}3&2&3\\2&0&2\end{array}$
 - 323
 - Forward pass (L->R, top->bottom) and backward pass (R->L, bottom->top)
 - o Take smallest value
 - Approximating real Euclidean distance
- Once you have precomputed array, you can put down another contour and compute its cost
- Essentially a correspondence to blurring
- A chamfer in woodworking is a groove
- o Local maximum between two edges "Medial Axis Transform"
- o Another term is "Voronoi Surface" of a set of points
 - Assume we have a finite set of points
 - Picture a graph
 - Every pixel has some height that is D(x,y)
 - What will be nature of surface?
 - Around one point it will be a cone
 - Cones will intersect and cut each other off
 - Voronoi diagrams are dividing space into polygons around sites
 - Each polygon contains points closest to the site within it
- Hausdorff Distance
 - \circ h(A, B) is the directed distance from A to B
 - o h(A, B) is max over (a elements of A) min over (b Elements of B) ||a-b||
 - For each point on A, find its closest point on B
 - Now look at max distance over all A points
 - This is directional, A to B might be different from B to
 - Not a symmetric function not a distance!
 - Make it symmetrical by taking max of h(A, B) and h(B, A)
 - kth directed distance would be to take the kth percentile (say 75%) that ignores outliers
 - Standard notion in math
 - Algorithms for computation come from Hultenlocher, Klanderman, and Rucklidge

- How find translation that minimizes Hausdorff distance?
- Take one shape, sweep over the other
- Philosophical difference between distances of today and distances of last lecture
 - o Before, wanted nose to line up to nose
 - Requires much more "mumbo jumbo"
 - The algorithms presented today don't care if the nose lines up to the nose
 Probably faster but not as good
 - In both cases, work well when you don't have to consider a large set of transformations