CS294-6 (Fall 2004) Recognizing People, Objects and Actions Lecture: February 17, 2004

 Digit Recognition and Distance Transforms

 Digit Recognition and Distance Transforms
 Lecturer: Jitendra Malik

Digit Recognition

- Shape Context Deformable Template Nearest Neighbor
- Find correspondences
- Align using TPS (Thin Plate Splines)
- Use nearest neighbor classifier
- Need to have distance function
- Shape context distance between corresponding points
- Appearance distance between corresponding points
- Use blocks of pixels - i.e. 3×3 or 5×5
- Bending energy
- Sum distances over all points
- Use weighted combination of three different metrics (α, β, and γ)
- How do we tune the parameters?
- Cross validation
- Split your data into training data and testing data
- Try different choices of parameters on training data
- Quantize the parameter values and do a search
- Performance is judged using testing data
- Using same data for training and testing sets is cheating
- Nearest neighbor classifiers
- K nearest neighbor classifiers
- Pick the k nearest ($1-\mathrm{NN}, 3-\mathrm{NN}, 5-\mathrm{NN}$) and then have a majority vote from among them.
- 10,000 digit test set
- . 63% error rate
- Convolutional Neural Nets
- . 82% error rate
- Tangent Distance Nearest Neighbor
- Different data set, but similar error rate
- Support Vector Machines
- DeCoste and Scholkopf
- Paper on course website
- Virtual support vectors
- . 56% error rate
- Decision Trees
- Decision trees are classifiers
- Work by having a test that is a function of the features
- Test returns either true or false
- Take appropriate branch
- Another test on features
- At some point you have a leaf where there is no more testing to be done
- At this point you make the decision, i.e. this is the digit ' 3 '.
- Alternately you could state probabilities: $\operatorname{Pr}\left({ }^{\prime} 5^{\prime}\right)=.7, \operatorname{Pr}\left({ }^{\prime} 2^{\prime}\right)=.1$, $\operatorname{Pr}\left({ }^{\prime} 4\right.$ ' $)=.2$, others zero
- Using tree is easy, implement tests, keep traversing tree until you hit a leaf
- Very fast
- Cost is expected cost of test times number of levels in the tree
- How do we train a decision tree (in general)?
- For training a decision tree we have a whole bunch of training examples
- Each example looks like $\left\langle f_{0}, f_{1}, f_{2}, \ldots, f_{10}, y>\right.$ where y is a class label.
- Ideal test is one where all chairs would go down one branch and all nonchairs go down opposite branch.
- By the time you hit a leaf you should have as close to having "pure" subsets as possible
- Pure meaning all at leaf are of one type
- How do we measure purity/impurity?
- Entropy
- $\quad \sum\left(\mathrm{Pi}^{*} \log (\mathrm{Pi})\right)$ for $\mathrm{i}=1$ to k where k is the number of classes
- Let's say for entire data set we have entropy H_{0}
- After asking question the data is split into D^{+}and D^{-}
- Figure out entropy for D^{+}and D^{-}
- Entropy after split is $\alpha^{*} \mathrm{H}\left(\mathrm{D}^{+}\right)+(1-\alpha)^{*} \mathrm{H}\left(\mathrm{D}^{-}\right)$
- Entropy reduction $=\mathrm{H}_{\text {before }}-\mathrm{H}_{\text {after }}$
- Also referred to as information gain.
- Pick tests that maximize entropy reduction at each stage
- Greedy technique, at each stage look for best test
- Infinite set of tests!
- Use axis parallel cuts to reduce number of possible tests
- i.e. $\mathrm{f}_{0}>0$?
- Other possible tests include comparison to stored prototypes - tests can be anything you want
- What kinds of tests make sense for vision?
- Look for specific arrangement of pixel values in certain geometric configuration with each other
- Tags
- Think of as a local edge
- Description of local image window
- i.e. horizontal edge, vertical edge, endpoint, etc.
- Arrangements
- Between local image patches
- Quantize orientations into eight possibilities
- Each zone is $360 / 8=45$ degrees in size - no overlap
- Can say things like Patch2 is northeast of Patch1 and Patch3 is east of Patch1
- Also can look at distances, or ratios of distances
- How pick tags?
- A decision tree is used to pick the tags
- 4 x 4 pixel window
- Classify all possible 4 x 4 pixel windows into tags
- Dealing with binary black and white images
- Want tags to be discriminative
- Split using entropy without taking into account label of category i.e. which tag splits data most equally?
- A given pixel can belong to more than one tag - all the ones from its leaf where all 16 pixel values are specified to the root node where only 1 pixel value is specified
- Tags end up being edges or terminators
- Typically, only go four levels down - no more than four pixels constrained, rest are don't care
- An aside - consider all possible binary images with 3×3 windows
- 2^{9} possible windows
- What windows do you see most often?
- All white and all black
- Most of the world is boring
- Next most common will be edges
- Next most common will be corners
- Least common will be checkerboard pattern
- For handwriting recognition, this distribution was tuned to data
- Why not use simple edge detectors?
- "Learning chauvinists" - don't want to build in any knowledge
- Relations are quantized between pair of tags, just one of eight relative orientations
- Questions will be of the form, "Is there any instance of this specific tag arrangement in the image?" i.e. Tag type 4 and 3 north of tag type 1 and tag type 2 southwest of tag type 1
- Now we have a computational complexity problem
- 62 possible tags
- Top level has $62 * 62 * 8$
- Concept of minimal extension
- Each child test is an extension of the test you already have
- Add an edge, or another tag to the previous test
- Even with this computational complexity is quite high
- Randomized decision trees
- Don't try to find single best decision tree
- Use only part of the data to come up with the decision tree
- Build up many different decision trees
- Each tree is noisy
- Best decision tree had error rate of 7%
- Average error rate of 10%
- Average predictions of all the decision trees
- Aggregate classifier had error rate of under 1%
- Similar to "committee of experts" work
- Build up good estimator from lousy estimators as long as errors are uncorrelated
- Errors are uncorrelated here because the different trees used different training data
- Generalization
- 3×3 windows aren't fully specified - they have don't care pixels
- Range of possible angles and distances allowed for by arrangements
- Order Structure
- Work by Carlsson and Sullivan
- Given four points and four lines (one through each point)
- Each point has some relation to each line (left side vs. right side)
- Defining relationships between points and lines
- A small perturbation of diagram won't change description
- Big perturbations will
- Related to the idea of rank from statistics
- Largest number gets N , smallest gets 1
- Tests are done on rank, instead of actual number.
- Much more robust
- This is for a line
- In a plane or in 3D, becomes harder
- Order structure is the attempt to do rank in 2D
- Different data set, but similar error rate

Distance Transforms

- Chamfer Distance
- Proposed in 1977 by Barrow et al
- Want to match to images to each other
- Their application was matching images from an airplane with images from maps
- Want to align to boundaries to each other
- Different types of data, one is an image, other is lines on a map
- Can't just do SSD
- Run edge detector to get contours
- How align the two shapes?
- One shape is projection of 3D shape.
- Fiddle with parameters to get two curves to line up
- Fundamentally different from correspondence based approach
- Correspondence based approach tries to find best match for every point
- Distance based, just find closest point in other set
- For each point on one curve, measure distance to closest point in other set
- Distance is zero at intersections
- How do we aggregate distances?
- Take average?
- Take maximum?
- Consider straightforward version where we take some kind of average
- One curve is fixed, other curve is swung around until it lines up best
- Precomputation on fixed curve
- Auxiliary array $\mathrm{D}(\mathrm{x}, \mathrm{y})$ over whole image where $\mathrm{D}(\mathrm{x}, \mathrm{y})$ is distance to nearest edge point
- Values are zero along contour
- Perpendicular to edge, values will go ..., $3,2,1,0,1,2,3, \ldots$
- Back in the day they had to use integers, so we double everything to avoid real numbers, take 1.5 as approximation of $\sqrt{ }$, and get a basic pattern of:

$$
323
$$

202
323

- Forward pass (L->R, top->bottom) and backward pass (R->L, bottom->top)
- Take smallest value
- Approximating real Euclidean distance
- Once you have precomputed array, you can put down another contour and compute its cost
- Essentially a correspondence to blurring
- A chamfer in woodworking is a groove
- Local maximum between two edges - "Medial Axis Transform"
- Another term is "Voronoi Surface" of a set of points
- Assume we have a finite set of points
- Picture a graph
- Every pixel has some height that is $\mathrm{D}(\mathrm{x}, \mathrm{y})$
- What will be nature of surface?
- Around one point it will be a cone
- Cones will intersect and cut each other off
- Voronoi diagrams are dividing space into polygons around sites
- Each polygon contains points closest to the site within it
- Hausdorff Distance
- $h(A, B)$ is the directed distance from A to B
- $h(A, B)$ is max over (a elements of A) min over (b Elements of B) $\|a-b\|$
- For each point on A, find its closest point on B
- Now look at max distance over all A points
- This is directional, A to B might be different from B to
- Not a symmetric function - not a distance!
- Make it symmetrical by taking max of $h(A, B)$ and $h(B, A)$
- kth directed distance would be to take the kth percentile (say 75\%) that ignores outliers
- Standard notion in math
- Algorithms for computation come from Hultenlocher, Klanderman, and Rucklidge
- How find translation that minimizes Hausdorff distance?
- Take one shape, sweep over the other
- Philosophical difference between distances of today and distances of last lecture
- Before, wanted nose to line up to nose
- Requires much more "mumbo jumbo"
- The algorithms presented today don't care if the nose lines up to the nose
- Probably faster but not as good
- In both cases, work well when you don't have to consider a large set of transformations

