
CS294-6 (Fall 2004) Recognizing People, Objects and Actions Lecture:
February 17, 2004

Digit Recognition and Distance Transforms
Lecturer: Jitendra Malik Scribe: Roger Bock

Digit Recognition

• Shape Context Deformable Template Nearest Neighbor
o Find correspondences
o Align using TPS (Thin Plate Splines)
o Use nearest neighbor classifier

� Need to have distance function
• Shape context distance between corresponding points
• Appearance distance between corresponding points

o Use blocks of pixels – i.e. 3x3 or 5x5
• Bending energy

� Sum distances over all points
• Use weighted combination of three different metrics (, , and)
• How do we tune the parameters?

o Cross validation
� Split your data into training data and testing data
� Try different choices of parameters on training data

• Quantize the parameter values and do a
search

� Performance is judged using testing data
� Using same data for training and testing sets is

cheating
o Nearest neighbor classifiers

� K nearest neighbor classifiers
• Pick the k nearest (1-NN, 3-NN, 5-NN) and then have a majority

vote from among them.
o 10,000 digit test set
o .63% error rate

• Convolutional Neural Nets
o .82% error rate

• Tangent Distance Nearest Neighbor
o Different data set, but similar error rate

• Support Vector Machines
o DeCoste and Scholkopf

� Paper on course website
� Virtual support vectors

o .56% error rate
• Decision Trees

o Decision trees are classifiers
� Work by having a test that is a function of the features

� Test returns either true or false
� Take appropriate branch
� Another test on features
� At some point you have a leaf where there is no more testing to be done
� At this point you make the decision, i.e. this is the digit ‘3’.

• Alternately you could state probabilities: Pr(‘5’) = .7, Pr(‘2’) = .1,
Pr(‘4’) = .2, others zero

� Using tree is easy, implement tests, keep traversing tree until you hit a leaf
• Very fast
• Cost is expected cost of test times number of levels in the tree

o How do we train a decision tree (in general)?
� For training a decision tree we have a whole bunch of training examples

• Each example looks like <f0, f1, f2, …, f10, y> where y is a class
label.

� Ideal test is one where all chairs would go down one branch and all non-
chairs go down opposite branch.

� By the time you hit a leaf you should have as close to having “pure”
subsets as possible

• Pure meaning all at leaf are of one type
� How do we measure purity/impurity?

• Entropy
• (Pi * log(Pi)) for i=1 to k where k is the number of classes

� Let’s say for entire data set we have entropy H0
� After asking question the data is split into D+ and D-
� Figure out entropy for D+ and D-
� Entropy after split is * H(D+) + (1-) * H(D-)
� Entropy reduction = Hbefore – Hafter

• Also referred to as information gain.
� Pick tests that maximize entropy reduction at each stage
� Greedy technique, at each stage look for best test
� Infinite set of tests!

• Use axis parallel cuts to reduce number of possible tests
• i.e. f0 > 0?

� Other possible tests include comparison to stored prototypes – tests can be
anything you want

o What kinds of tests make sense for vision?
� Look for specific arrangement of pixel values in certain geometric

configuration with each other
• Tags

o Think of as a local edge
o Description of local image window
o i.e. horizontal edge, vertical edge, endpoint, etc.

• Arrangements
o Between local image patches
o Quantize orientations into eight possibilities
o Each zone is 360 / 8 = 45 degrees in size – no overlap

o Can say things like Patch2 is northeast of Patch1 and
Patch3 is east of Patch1

o Also can look at distances, or ratios of distances
� How pick tags?

• A decision tree is used to pick the tags
• 4x4 pixel window
• Classify all possible 4x4 pixel windows into tags
• Dealing with binary black and white images
• Want tags to be discriminative
• Split using entropy without taking into account label of category –

i.e. which tag splits data most equally?
• A given pixel can belong to more than one tag – all the ones from

its leaf where all 16 pixel values are specified to the root node
where only 1 pixel value is specified

• Tags end up being edges or terminators
• Typically, only go four levels down – no more than four pixels

constrained, rest are don’t care
� An aside - consider all possible binary images with 3x3 windows

• 29 possible windows
• What windows do you see most often?

o All white and all black
o Most of the world is boring
o Next most common will be edges
o Next most common will be corners
o Least common will be checkerboard pattern

• For handwriting recognition, this distribution was tuned to data
� Why not use simple edge detectors?

• “Learning chauvinists” – don’t want to build in any knowledge
� Relations are quantized between pair of tags, just one of eight relative

orientations
� Questions will be of the form, “Is there any instance of this specific tag

arrangement in the image?” i.e. Tag type 4 and 3 north of tag type 1 and
tag type 2 southwest of tag type 1

o Now we have a computational complexity problem
� 62 possible tags
� Top level has 62*62*8
� Concept of minimal extension

• Each child test is an extension of the test you already have
• Add an edge, or another tag to the previous test

� Even with this computational complexity is quite high
� Randomized decision trees

• Don’t try to find single best decision tree
• Use only part of the data to come up with the decision tree
• Build up many different decision trees
• Each tree is noisy

• Best decision tree had error rate of 7%
o Average error rate of 10%

• Average predictions of all the decision trees
• Aggregate classifier had error rate of under 1%
• Similar to “committee of experts” work

o Build up good estimator from lousy estimators as long as
errors are uncorrelated

o Errors are uncorrelated here because the different trees used
different training data

o Generalization
� 3x3 windows aren’t fully specified – they have don’t care pixels
� Range of possible angles and distances allowed for by arrangements

o Order Structure
� Work by Carlsson and Sullivan
� Given four points and four lines (one through each point)
� Each point has some relation to each line (left side vs. right side)
� Defining relationships between points and lines
� A small perturbation of diagram won’t change description
� Big perturbations will
� Related to the idea of rank from statistics

• Largest number gets N, smallest gets 1
• Tests are done on rank, instead of actual number.
• Much more robust
• This is for a line

o In a plane or in 3D, becomes harder
o Order structure is the attempt to do rank in 2D

o Different data set, but similar error rate

Distance Transforms

• Chamfer Distance
o Proposed in 1977 by Barrow et al
o Want to match to images to each other
o Their application was matching images from an airplane with images from maps
o Want to align to boundaries to each other
o Different types of data, one is an image, other is lines on a map

� Can’t just do SSD
o Run edge detector to get contours
o How align the two shapes?
o One shape is projection of 3D shape.
o Fiddle with parameters to get two curves to line up
o Fundamentally different from correspondence based approach

� Correspondence based approach tries to find best match for every point
o Distance based, just find closest point in other set
o For each point on one curve, measure distance to closest point in other set

� Distance is zero at intersections
o How do we aggregate distances?

� Take average?
� Take maximum?

o Consider straightforward version where we take some kind of average
o One curve is fixed, other curve is swung around until it lines up best
o Precomputation on fixed curve

� Auxiliary array D(x,y) over whole image where D(x,y) is distance to
nearest edge point

• Values are zero along contour
• Perpendicular to edge, values will go …, 3, 2, 1, 0, 1, 2, 3, …
• Back in the day they had to use integers, so we double everything

to avoid real numbers, take 1.5 as approximation of 2, and get a
basic pattern of:

3 2 3
2 0 2
3 2 3

• Forward pass (L->R, top->bottom) and backward pass (R->L,
bottom->top)

o Take smallest value
• Approximating real Euclidean distance

o Once you have precomputed array, you can put down another contour and
compute its cost

o Essentially a correspondence to blurring
o A chamfer in woodworking is a groove
o Local maximum between two edges – “Medial Axis Transform”
o Another term is “Voronoi Surface” of a set of points

� Assume we have a finite set of points
� Picture a graph
� Every pixel has some height that is D(x,y)
� What will be nature of surface?

• Around one point it will be a cone
• Cones will intersect and cut each other off

� Voronoi diagrams are dividing space into polygons around sites
• Each polygon contains points closest to the site within it

• Hausdorff Distance
o h(A, B) is the directed distance from A to B
o h(A, B) is max over (a elements of A) min over (b Elements of B) ||a-b||
o For each point on A, find its closest point on B
o Now look at max distance over all A points
o This is directional, A to B might be different from B to

� Not a symmetric function – not a distance!
o Make it symmetrical by taking max of h(A, B) and h(B, A)
o kth directed distance would be to take the kth percentile (say 75%) that ignores

outliers
o Standard notion in math
o Algorithms for computation come from Hultenlocher, Klanderman, and

Rucklidge

o How find translation that minimizes Hausdorff distance?
o Take one shape, sweep over the other

• Philosophical difference between distances of today and distances of last lecture
o Before, wanted nose to line up to nose

� Requires much more “mumbo jumbo”
o The algorithms presented today don’t care if the nose lines up to the nose

� Probably faster but not as good
o In both cases, work well when you don’t have to consider a large set of

transformations

