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Digit Recognition 

• Shape Context Deformable Template Nearest Neighbor 
o Find correspondences 
o Align using TPS (Thin Plate Splines) 
o Use nearest neighbor classifier 

� Need to have distance function 
• Shape context distance between corresponding points 
• Appearance distance between corresponding points 

o Use blocks of pixels – i.e. 3x3 or 5x5 
• Bending energy 

� Sum distances over all points 
• Use weighted combination of three different metrics (, , and ) 
• How do we tune the parameters? 

o Cross validation 
� Split your data into training data and testing data 
� Try different choices of parameters on training data 

• Quantize the parameter values and do a 
search 

� Performance is judged using testing data 
� Using same data for training and testing sets is 

cheating 
o Nearest neighbor classifiers 

� K nearest neighbor classifiers 
• Pick the k nearest (1-NN, 3-NN, 5-NN) and then have a majority 

vote from among them. 
o 10,000 digit test set 
o .63% error rate 

• Convolutional Neural Nets 
o .82% error rate 

• Tangent Distance Nearest Neighbor 
o Different data set, but similar error rate 

• Support Vector Machines 
o DeCoste and Scholkopf 

� Paper on course website 
� Virtual support vectors 

o .56% error rate 
• Decision Trees 

o Decision trees are classifiers 
� Work by having a test that is a function of the features 



� Test returns either true or false 
� Take appropriate branch 
� Another test on features 
� At some point you have a leaf where there is no more testing to be done 
� At this point you make the decision, i.e. this is the digit ‘3’. 

• Alternately you could state probabilities: Pr(‘5’) = .7, Pr(‘2’) = .1, 
Pr(‘4’) = .2, others zero 

� Using tree is easy, implement tests, keep traversing tree until you hit a leaf 
• Very fast 
• Cost is expected cost of test times number of levels in the tree 

o How do we train a decision tree (in general)?  
� For training a decision tree we have a whole bunch of training examples 

• Each example looks like <f0, f1, f2, …, f10, y> where y is a class 
label. 

� Ideal test is one where all chairs would go down one branch and all non-
chairs go down opposite branch. 

� By the time you hit a leaf you should have as close to having “pure” 
subsets as possible 

• Pure meaning all at leaf are of one type 
� How do we measure purity/impurity? 

• Entropy 
• (Pi * log(Pi)) for i=1 to k where k is the number of classes 

� Let’s say for entire data set we have entropy H0 
� After asking question the data is split into D+ and D- 
� Figure out entropy for D+ and D- 
� Entropy after split is  * H(D+) + (1- ) * H(D-) 
� Entropy reduction = Hbefore – Hafter 

• Also referred to as information gain. 
� Pick tests that maximize entropy reduction at each stage 
� Greedy technique, at each stage look for best test 
� Infinite set of tests! 

• Use axis parallel cuts to reduce number of possible tests 
• i.e. f0 > 0? 

� Other possible tests include comparison to stored prototypes – tests can be 
anything you want 

o What kinds of tests make sense for vision? 
� Look for specific arrangement of pixel values in certain geometric 

configuration with each other 
• Tags 

o Think of as a local edge 
o Description of local image window 
o i.e. horizontal edge, vertical edge, endpoint, etc. 

• Arrangements 
o Between local image patches 
o Quantize orientations into eight possibilities 
o Each zone is 360 / 8  = 45 degrees in size – no overlap 



o Can say things like Patch2 is northeast of Patch1 and 
Patch3 is east of Patch1 

o Also can look at distances, or ratios of distances 
� How pick tags? 

• A decision tree is used to pick the tags 
• 4x4 pixel window 
• Classify all possible 4x4 pixel windows into tags 
• Dealing with binary black and white images 
• Want tags to be discriminative 
• Split using entropy without taking into account label of category – 

i.e. which tag splits data most equally? 
• A given pixel can belong to more than one tag – all the ones from 

its leaf where all 16 pixel values are specified to the root node 
where only 1 pixel value is specified 

• Tags end up being edges or terminators 
• Typically, only go four levels down – no more than four pixels 

constrained, rest are don’t care 
� An aside - consider all possible binary images with 3x3 windows 

• 29 possible windows 
• What windows do you see most often? 

o All white and all black 
o Most of the world is boring 
o Next most common will be edges 
o Next most common will be corners 
o Least common will be checkerboard pattern 

• For handwriting recognition, this distribution was tuned to data 
� Why not use simple edge detectors? 

• “Learning chauvinists” – don’t want to build in any knowledge 
� Relations are quantized between pair of tags, just one of eight relative 

orientations 
� Questions will be of the form, “Is there any instance of this specific tag 

arrangement in the image?”  i.e. Tag type 4 and 3 north of tag type 1 and 
tag type 2 southwest of tag type 1 

o Now we have a computational complexity problem 
� 62 possible tags 
� Top level has 62*62*8 
� Concept of minimal extension 

• Each child test is an extension of the test you already have 
• Add an edge, or another tag to the previous test 

� Even with this computational complexity is quite high 
� Randomized decision trees 

• Don’t try to find single best decision tree 
• Use only part of the data to come up with the decision tree 
• Build up many different decision trees 
• Each tree is noisy 



• Best decision tree had error rate of 7% 
o Average error rate of 10% 

• Average predictions of all the decision trees 
• Aggregate classifier had error rate of under 1% 
• Similar to “committee of experts” work 

o Build up good estimator from lousy estimators as long as 
errors are uncorrelated 

o Errors are uncorrelated here because the different trees used 
different training data 

o Generalization 
� 3x3 windows aren’t fully specified – they have don’t care pixels 
� Range of possible angles and distances allowed for by arrangements 

o Order Structure 
� Work by Carlsson and Sullivan 
� Given four points and four lines (one through each point) 
� Each point has some relation to each line (left side vs. right side) 
� Defining relationships between points and lines 
� A small perturbation of diagram won’t change description 
� Big perturbations will 
� Related to the idea of rank from statistics 

• Largest number gets N, smallest gets 1 
• Tests are done on rank, instead of actual number. 
• Much more robust 
• This is for a line 

o In a plane or in 3D, becomes harder 
o Order structure is the attempt to do rank in 2D 

o Different data set, but similar error rate 
 
Distance Transforms 

• Chamfer Distance 
o Proposed in 1977 by Barrow et al 
o Want to match to images to each other 
o Their application was matching images from an airplane with images from maps 
o Want to align to boundaries to each other 
o Different types of data, one is an image, other is lines on a map 

� Can’t just do SSD 
o Run edge detector to get contours 
o How align the two shapes? 
o One shape is projection of 3D shape. 
o Fiddle with parameters to get two curves to line up 
o Fundamentally different from correspondence based approach 

� Correspondence based approach tries to find best match for every point 
o Distance based, just find closest point in other set 
o For each point on one curve, measure distance to closest point in other set 

� Distance is zero at intersections 
o How do we aggregate distances? 



� Take average? 
� Take maximum? 

o Consider straightforward version where we take some kind of average 
o One curve is fixed, other curve is swung around until it lines up best 
o Precomputation on fixed curve 

� Auxiliary array D(x,y) over whole image where D(x,y) is distance to 
nearest edge point 

• Values are zero along contour 
• Perpendicular to edge, values will go …, 3, 2, 1, 0, 1, 2, 3, … 
• Back in the day they had to use integers, so we double everything 

to avoid real numbers, take 1.5 as approximation of 2, and get a 
basic pattern of: 

3 2 3 
2 0 2 
3 2 3 

• Forward pass (L->R, top->bottom) and backward pass (R->L, 
bottom->top) 

o Take smallest value 
• Approximating real Euclidean distance 

o Once you have precomputed array, you can put down another contour and 
compute its cost 

o Essentially a correspondence to blurring 
o A chamfer in woodworking is a groove 
o Local maximum between two edges – “Medial Axis Transform” 
o Another term is “Voronoi Surface” of a set of points 

� Assume we have a finite set of points 
� Picture a graph 
� Every pixel has some height that is D(x,y) 
� What will be nature of surface? 

• Around one point it will be a cone 
• Cones will intersect and cut each other off 

� Voronoi diagrams are dividing space into polygons around sites 
• Each polygon contains points closest to the site within it 

• Hausdorff Distance 
o h(A, B) is the directed distance from A to B 
o h(A, B) is max over (a elements of A) min over (b Elements of B) ||a-b|| 
o For each point on A, find its closest point on B 
o Now look at max distance over all A points 
o This is directional, A to B might be different from B to  

� Not a symmetric function – not a distance! 
o Make it symmetrical by taking max of h(A, B) and h(B, A) 
o kth directed distance would be to take the kth percentile (say 75%) that ignores 

outliers 
o Standard notion in math 
o Algorithms for computation come from Hultenlocher, Klanderman, and 

Rucklidge 



o How find translation that minimizes Hausdorff distance? 
o Take one shape, sweep over the other 

• Philosophical difference between distances of today and distances of last lecture 
o Before, wanted nose to line up to nose 

� Requires much more “mumbo jumbo” 
o The algorithms presented today don’t care if the nose lines up to the nose 

� Probably faster but not as good 
o In both cases, work well when you don’t have to consider a large set of 

transformations 


