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Joint Induction of Shape Features and
Tree Classifiers

Yali Amit, Donald Geman, and Kenneth Wilder

Abstract —We introduce a very large family of binary features for two-
dimensional shapes. The salient ones for separating particular shapes
are determined by inductive learning during the construction of
classification trees. There is a feature for every possible geometric
arrangement of local topographic codes. The arrangements express
coarse constraints on relative angles and distances among the code
locations and are nearly invariant to substantial affine and nonlinear
deformations. They are also partially ordered, which makes it possible
to narrow the search for informative ones at each node of the tree.
Different trees correspond to different aspects of shape. They are
statistically weakly dependent due to randomization and are
aggregated in a simple way. Adapting the algorithm to a shape family
is then fully automatic once training samples are provided. As an
illustration, we classify handwritten digits from the NIST database; the
error rate is .7 percent.

Index Terms —Shape quantization, feature induction, invariant
arrangements, multiple decision trees, randomization, digit recognition,
local topographic codes.

————————   ✦   ————————

1 INTRODUCTION

WE revisit the problem of finding good features for separating
two-dimensional shape classes in the context of invariance and
inductive learning. The feature set we consider is virtually infinite.
The salient ones for a particular shape family are determined from
training samples during the construction of classification trees. We
experiment with isolated handwritten digits. Off-line recognition
has attracted enormous attention, including a competition spon-
sored by the National Institute of Standards and Technology
(NIST) [1], and there is still no solution that matches human per-
formance. Many approaches today are based on nonparametric
statistical methods such as neural networks [2], [3], discriminant
analysis [4], [5], nearest-neighbor rules with different metrics [6],
[7], [8], and classification trees [9], [10]. Hybrid and multiple classi-
fiers are also effective [11], [12]. In many cases the feature vector
does not explicitly address “shape.”

Our features are shape-based and bear a resemblance to the
geometric invariants which have been proposed for recognizing
rigid shapes and three-dimensional objects. (See [13] for a review
and bibliography.) Typically this involves extracting boundary
information, computing tangents and identifying distinguished
points, such as those of high curvature or inflections. Invariant
geometric relations are then determined among these special
points; see, e.g., [14], [15], [16]. Many authors report much better
results with these and “structural features” than with normalized
bit maps.

Our features also involve geometric relations among points,
but not distinguished points. Instead, the pixels are coded in a
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very coarse manner based on the image topography in their im-
mediate neighborhood. We refer to these codes as “tags.” They are
much too common and primitive to be informative about shape.
The features we use are arrangements of tags involving relative
angles and distances. Although not strictly invariant to affine
transformations, they are “semi-invariant” in a sense that will be
made precise in Section 3. On the other hand, making these two
compromises—giving up discriminating points and strict invari-
ance—allows us to define a very large family of features, which
has a natural partial ordering corresponding to increasing detail
and structure. In addition, the semi-invariance extends to signifi-
cant nonlinear deformations.

The most informative features for separating particular shape
classes are singled out by recursively partitioning training data
using the standard splitting criterion of entropy reduction. The
partial ordering makes this computationally feasible. The choice of
features used by the classifier is part of the training process and
there is no dedicated modeling. As a result, the method is very
portable; for example, it has been applied to recognizing deformed
LaTeX symbols (293 classes) [17] and rigid three-dimensional ob-
jects [18].

The classifier is constructed from multiple classification trees.
Randomization prevents the same features from being chosen
from tree to tree and guarantees weak dependence. These statisti-
cal issues are analyzed in [17] and [19], together with semi-
invariance, generalization and the bias/variance tradeoff. The
purpose here is to introduce the features, outline the algorithm
and experiment with handwritten digits. The training and test sets
are taken from the “NIST Special Database 3” [20]. In terms of
speed and accuracy, we achieve results which are comparable to
the best of those reported elsewhere.

2 TAGS

The first step in the algorithm involves assigning each pixel in the
image one or more “tags” characterizing the local topography of
the intensity surface in its neighborhood. Instead of manually
characterizing the local configurations of interest, for example
trying to define local operators to identify gradients, we adopt an
information-theoretic approach and “code” a microworld of su-
bimages through tree-structured vector quantization. However,
other types of local primitives might work equally well; for exam-
ple, our tags are similar to oriented edge fragments. The discrimi-
nating power derives from spatial relationships among the primi-
tives rather than from the primitives themselves.

A large sample of 4 � 4 subimages is randomly extracted from
the training data. The corresponding shape classes are irrelevant
and not retained. This family of training subimages is then clus-
tered by growing a decision tree. At each node there are 16 possi-
ble “questions”: “Is site (i, j) black?” for i, j = 1, 2, 3, 4. The question
chosen is the one which divides the the subimages at the node as
equally as possible into two groups. There is a tag type for each
node of the resulting tree, except for the root. Thus, there are 2 + 4
+ 8 = 14 tags for a depth three tag tree and 62 tags for a depth five
tag tree, the one we use in our experiments. Depth five tags pro-
vide the most detailed descriptions of the topography. Observe
that the tag corresponding to an internal node represents the un-
ion of those in the subtree rooted at that node. Each pixel in an
image is then assigned all the tags encountered as the 4 � 4 su-
bimage which contains that pixel in the upper left-hand corner
proceeds down the tag tree.

For efficiency, the population is restricted to subimages con-
taining at least one black and one white site within the center four.
Obviously this concentrates the processing in the neighborhood of
boundaries. In the grey-level context it is useful to consider more
general tags, allowing variations on the concept of local homoge-

neity [18] and other local attributes of the intensity surface.
The first three levels of the tag tree constructed from the NIST

data are shown in Fig. 1. We also display the most common configu-
ration found at each of the eight depth three nodes. Note that there
are many other 4 � 4 configurations consistent with these nodes. In
Fig. 2, we show all instances of four of the depth three tags in four
images of a particular digit as well as all instances of four of the
depth five tags in the second row; the depth five tags are refinements
of the depth three tags. Notice that each instance of a depth five tag
is also an instance of its ancestor depth three tag.

Fig. 1. First three tag levels with most common configurations.

Fig. 2. Top: All instances of four depth three tags. Bottom: All instances
of four depth five tags.

The fixed size neighborhood conveys more or less the same in-
formation in a certain range of resolutions relative to the shapes
under consideration. In our experience this range is roughly 10 � 10
to 70 � 70. The more uniform the resolution across training and
test sets the better the ultimate performance of the classifier. A
multiresolution approach has been investigated in the context of
gray-level images and 3D objects in [18].

3 FEATURES: TAG ARRANGEMENTS

The shape features involve geometric arrangements of the tags
defined in terms of the angles of the vectors connecting their loca-
tions. There is one feature for each possible tag arrangement. An
arrangement may contain any number of tags and any subset of all
possible pairwise relations among these tags. More formally, then,



1302 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  19,  NO.  11,  NOVEMBER  1997

a tag arrangement is an attributed graph; the vertices of the graph
are labeled by the tag types and the edges by the angles (see be-
low) between the two corresponding vertices. Each such arrange-
ment is either present or not present in the image. The features are
therefore binary. “Present in the image” means there is at least one
set of tags of the prescribed type in the image whose locations
satisfy the indicated relationships.

There are eight possible relations between any two locations u
and v corresponding to the eight compass headings “north,”
“northeast,” “east,” etc. The two points satisfy relation k (k = 1, ..., 8)
if the angle of the vector u ��v is within S/4 of k*S/4. Fig. 3 shows
several digits which contain a specific geometric arrangement of
four tags. Since an arrangement involves only ranges of angles and
no fixed locations, it may appear many times in a given image as
illustrated in the bottom row of Fig. 3.

Fig. 3. Top row: Instances of a geometric arrangement in several 5s.
Bottom row: Several instances of the geometric arrangement in one 8.

It is clear from the description of these geometric relations that
even in the continuum they are invariant only to “neighborhoods”
in the space of affine transformations (in particular rotation, skew
and shear) as opposed to algebraic invariants [13], which are truly
invariant in the continuum. On the other hand, since the tag ar-
rangements are defined in terms of coarse tolerances on the angles,
they are also invariant to substantial nonlinear deformations and
very robust with respect to discretization noise and other forms of
degradation.

There is a partial ordering of the arrangements under which a
specific arrangement precedes any of its extensions involving
additional tags and/or relations. The partial ordering corre-
sponds to a hierarchy of structure. Small arrangements with few
tags produce coarse splits of shape space. As the arrangements
increase in size (say the number of tags plus relations), they
contain more and more information about the images which
contain them.

An important property of this ordering is the following. Given
an arrangement, define a minimal extension of it as one which con-
tains that arrangement together with either one additional tag in
relation to an existing one or a new relation between two existing
tags. Then given that two images of the same class share a common
feature (i.e., the same arrangement is present in both images), and
given a minimal extension of that feature, it is very likely that ei-
ther both images contain the extension or neither image does. This
property, which we call semi-invariance, is discussed in more detail
in [17]. On the other hand, given two images of different classes
which share a common feature, there are relatively many more
minimal extensions which split these. The goal of course is to find
a minimal extension which keeps most images of the same class
together while at the same time separates the dominating classes
from one another.

Metric relations can also be employed, for example ratios of
distances between two pairs of tags. In order to make the feature
binary one employs a quantization of the range of ratios, much
like the quantization of the range of angles described above. Thus,
for example, u v u w� � �  is a ternary relation among three lo-
cations u, v, w. Indeed it is conceivable that the algebraic functions
used to define pure invariants could be similarly quantized to
provide additional binary features. We have not yet explored this
possibility.

The number of features described here is clearly unlimited. Even
if the size of the arrangements is limited in advance (say, to at most
20 tags), the entire family still cannot be computed for a collection of
training data and subsequently used in conjunction with a standard
classifier. Moreover most of these features may lack any discrimi-
nating power for the particular problem at hand. How can this
source of information be accessed efficiently? One very natural way
is recursive partitioning based on the partial ordering.

4 RECURSIVE PARTITIONING OF SHAPE SPACE

A tree is built as follows. At the root loop only through the sim-
plest arrangements involving two tags and a relation. Each one
splits the data into two subsets: those with the arrangement and
those without it. Now compute the reduction in mean uncertainty
resulting from each split. Uncertainty is measured by Shannon
entropy and estimated using the training data—the standard pro-
cedure in pattern recognition and machine learning. Choose that
arrangement which yields the best split and denote the chosen
feature by A0. Those data points for which A0 is not present are in
the “no” child node. To split this node search again through ar-
rangements involving two tags and a relation. Those data points
for which A0 is present are in the “yes” child node and have one or
more instances of A0, the pending arrangement. Now search
among minimal extensions of A0 and choose the one which leads
to the greatest reduction in uncertainty about class given the exis-
tence of A0. Note that only a very small fraction of the total num-
ber of features (splits) is considered at a node, namely those which
minimally extend the pending feature. Note also that an extension
A1 of A0 is considered present in an image if any one of the in-
stances of A0 can be extended to satisfy the relations defined by A1.

Given we are at a node t in the tree, the pending arrangement,
say Ap, is the largest arrangement found along the path from the
root to t; it is of course the same for all data points in the node t.
Note that not every step along this path involves an additional tag
or relation because some of the nodes might be “no” children. The
arrangement At chosen to split node t minimizes the mean entropy
on class among minimal extensions of Ap. Continue in this fashion
until a stopping criterion is satisfied, e.g., the number of data
points falls below a threshold. The digits in Fig. 3 were taken from
a depth four node of a tree; the history of the node is “yes, yes, no,
yes” accounting for the existence of four tags in the pending
arrangement.

Fig. 4 depicts how the data is split at a node of a tree, again
grown as part of our experiments on handwritten digit classifica-
tion. The eight images are representative of those at the node. The
four images on the left answer “no” to a query involving the exis-
tence of a fifth tag in a relationship to the fourth tag. The four im-
ages on the right answer “yes.” In each case, an instance of the
pending arrangement is shown.

5 MULTIPLE RANDOMIZED TREES

Despite the fact that only minimal extensions of the pending ar-
rangement are entertained at each node, the procedure above is
still not practical due to the number of candidates. At the root
node there are 62 � 62 � 8 = 30,752 arrangements. The number of
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minimal extensions in the internal nodes is also very large. The
solution is simple: Instead of searching among all the admissible
arrangements at each node, we restrict the search to a small random
subset and choose the one among these which yields the best split.

Because the set of tag arrangements is so large, and because dif-
ferent ones address different aspects of shape, separate trees pro-
vide separate structural descriptions, characterizing the shapes
from different “points of view.” This is visually illustrated in Fig. 5,
where the same image is shown with an instance of the pending
arrangement at the terminal node for six different trees.

Fig. 4. Example of node-splitting in a typical digit tree; the query in-
volves adding a fifth tag (vertex) to the pending arrangement. Specifi-
cally, the proposed arrangement adds a fifth vertex and a fourth rela-
tion to the existing graph which has four vertices and three relations.

Fig. 5. Arrangements found in an image at terminal nodes of six differ-
ent trees.

Consequently, aggregating the information provided by a family
of trees should yield more accurate and more robust classification.
There are many ways this can be done, most of which are impracti-
cal due to the limited amount of training data. We have chosen a
simple method of aggregation which has proven successful.

Each tree may be regarded as a discrete random variable T on
the space of images X. Each terminal node corresponds to a differ-
ent value of T. Let T1, ..., TN be the set of trees. For each terminal
node of each tree, we compute the empirical distribution on the

classes {0, ..., 9} based on the training data which reaches that
node. Now given an image x and a tree Tn, let

P P Pn n nx x x1 6 2 7 2 73 8 , , . . . , ,0 9

be the distribution stored at the leaf of Tn reached by x. In addi-
tion, let

P Px x1 6 1 6 
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In order to classify an image x in the test set, we simply com-
pute P x1 6  and take the mode of this distribution as the estimated
class. Our first experiments with such multiple, randomized trees
were reported in [21] and there is a statistical analysis of the de-
pendence structure among the trees in [17]. Alternative ways of
producing and aggregating multiple trees are proposed in [22],
[23], [24], [25], and [19].

Various rejection criteria can also be defined in terms of P . For
example, an image x is classified only if the value at the mode of
P x1 6  exceeds some threshold or exceeds some multiple of the
value at the second mode.

6 HANDWRITTEN DIGIT RECOGNITION

Although classification rates for handwritten digit recognition are
inching up, it is somewhat difficult to assess the state-of-the-art.
One reason is that many different “test sets” have been proposed
and some are widely considered to be more difficult than others
[2], [8]. At the NIST competition, the best recognition rate at zero
percent rejection was 98.44 percent, but the next best was 96.84
percent, and only about half the systems had error rates of less
than 5 percent; see [1]. The test set (“NIST Test Data 1”) was con-
sidered quite difficult, and recognition rates reported elsewhere,
for instance, on portions of the NIST training set (“NIST Special
Database 3” [20]) or on the USPS test set [26], are generally higher.
For example, using a nearest-neighbor system, the study in [8]
achieves 98.61 percent, with 100,000 training points, on the NIST
training database. The best reported rates seem to be those ob-
tained by the ATT research group, up to 99.3 percent by training and
testing on composites of the NIST training and test sets; see [2].

Our experiments are based on portions of the NIST Special
Database 3, which consists of approximately 223,000 binary images
of isolated digits written by more than 2,000 writers. The images
vary widely in dimensions, ranging from about 20 to 100 rows,
and also vary in stroke thickness and other attributes. We used
100,000 digits for training and another 50,000 for testing. There is
no overlap of writers. A random sample from the test set is shown
in Fig. 6 (top).

The studies mentioned above utilize preprocessing, such as
thinning, slant correction and size normalization. Many also utilize
postprocessing; for example, in [27] it is shown how to use addi-
tional training data to make a second classifier more or less dedi-
cated to the mistakes and marginal decisions of the original classi-
fier; see also [2]. This procedure (“boosting”) can then be iterated.
Unfortunately, this requires very large training sets and/or the
ability to create artificial data. In order to compare our method
with those cited above, we did several experiments using only
preprocessing. Specifically, the images in the training set were
converted to a “reference pose” by slant-correcting and a crude
form of scaling. The “slant” of an image is taken as the slope of the
(regression) line fitted to the set of stroke pixels using least-
squares; the slant is “corrected” by then applying a linear trans-
formation to each row to bring the regression line to a vertical
orientation. Images with fewer than 32 rows were not scaled; the
others were down-sampled to exactly 32 rows by blurring and
subsampling on a regular lattice, thereby preserving the aspect
ratio of the original. As is well-known, there is virtually no loss of
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information at this resolution for character images. In Fig. 6, we
show the result of slant-correcting and scaling.

The best error rate we achieved with a single tree was about 7
percent. In contrast to standard recursive partitioning, we did not
grow a deep tree and “prune back” [28], which is an approach
designed to avoid “overfitting.” In the context of multiple trees
this problem appears to be of less importance. We stop splitting
when the number of data points in the second largest class falls
below 10.

Fig. 6. Random sample of test images before and after preprocessing.

Twenty-five trees T1, ..., T25 were made. The depth of the termi-
nal nodes (i.e., number of questions asked per tree) varies widely,
the average over trees being 8.8; the maximum depth is 20. The
average number of terminal nodes is about 600. We preprocessed
(scaled and slant-corrected) the test set in the same manner as the

training set. For a single tree Tn, we classify an image x based on
the mode of P n x1 6 , the probability distribution at the terminal
node where x lands. The average classification rate per tree is
about 91 percent.

By aggregating T1, ..., T25, which means classifying based on the
mode of the aggregate distribution P x1 6 , the classification rate
climbs to 99.2 percent (with no rejection). In Fig. 7, we show a ran-
dom sample of the digits we classify incorrectly. The classification
rate as a function of the rejection rate is also of interest. Rejection is
based on the ratio between the mode and the next highest class in
the aggregate distribution. For example, the classification rate is
99.5 percent with 1 percent rejection and 99.8 percent with 3 per-
cent rejection. Finally, doubling the number of trees makes the
classification rates 99.3 percent, 99.6 precent, and 99.8 percent at 0,
1, and 2 percent rejection, respectively; the error rate versus rejec-
tion rate curve is shown in Fig. 8.

We performed a second experiment in which the test data
was not preprocessed in the manner of the training data; in fact,
the test images were classified without utilizing the pixel dimen-
sions of the digits. (In particular, the size of the bounding box is
irrelevant.) Instead, each test image was classified with the same
set of trees at two resolutions (original and halved) and three
(fixed) slants. The highest of the resulting six modes determines
the classification. (This might be viewed as a very crude version
of “active testing,” in which a discrete set of “poses” is searched

for a good match with a reference pose.) The classification rate
was 98.9 percent.

There are other properties of classifiers besides accuracy which
are important, such as training time, storage requirements, and
computational complexity. Nearest-neighbor classifiers require no
training but considerable memory and are relatively slow; neural
networks are slow to train but fast on line. Our classifier is rela-
tively easy to train, requiring about 25 MB of memory during
training, due primarily to storing the tags for all the images and
storing the instances of the pending arrangements. The memory
requirements for testing are negligible.

Fig. 7. Random sample of incorrectly classified digits.

Fig. 8. Error rate vs. reject rate.

The key computational component in classification is “instance
checking.” On the average a digit will have about ten instances of
each tag and 10 instances of the pending tag arrangement at each
node. Therefore, at each node, we perform about 100 relation
checks in order to determine whether or not a minimal extension
involving a particular tag and angle relation is present. Aggregat-
ing this over 25 trees, and taking the average tree depth as 10,
leads to approximately 25,000 “checks” per digit. Each of these
involves determining an arctangent from a precomputed table in
order to check an angle condition between two tag locations. (It
should be noted that two instances of a tag arrangement are de-
clared the same if all the corresponding vertices have approxi-
mately the same image location. However, the computation for
“instance clustering” is small compared with checking.) On a typi-
cal workstation one can then classify at least 15�50 digits per sec-
ond without special efforts to optimize the code; the time is ap-
proximately equally divided between extracting the tags from an
image and sending it down the trees.

Finally, additional experiments are reported in [19]. Some of
these utilize other training and test sets, such as the USPS database
and a composite of NIST Special Database 3 and NIST Test Data 1;
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the results are comparable. Other experiments involve a post-
processing step applied to the reject set, utilizing the full aggre-
gated distribution P x1 6  in a nearest-neighbor context. Since this
10-dimensional output vector is more informative than the mode
alone, and since the reject set is small, the classification rate can be
improved to 99.5 percent with almost no increase in the average
amount of computation per digit.

7 CONCLUSION

We have reported our progress on classifying handwritten digits
using a new set of features as candidates for splitting rules in re-
cursive partitioning. The first step is transforming the image by
replacing pixel values by five bit codes which characterize the
local topography in the vicinity of boundaries. In contrast to work
on distinguished point features, the codes are primitive and re-
dundant; in particular, the points themselves cannot disambiguate
among shapes. All the discriminating power derives from spatial
relationships among the codes. There is a binary feature for each
such arrangement.

It is well-known that decision trees offer a powerful mechanism
for feature selection but the standard method for constructing
trees is not practical because our feature set is virtually infinite.
The remedy is to utilize the natural partial ordering on arrange-
ments together with randomization, which has the added benefit
of reducing the statistical dependence from tree to tree.

There is one general algorithm for tree construction based on
the entire feature set. The particular subset of features used is
problem-dependent and determined inductively from training
samples. There is no explicit modeling. We apply the algorithm to
a training set of handwritten digits but nothing would change if
the images contained other shapes, or hundreds of shape classes.
Perhaps the main reason is the property of semi-invariance to sig-
nificant linear and nonlinear deformations, which is a generic at-
tribute of the entire feature set. Features which separate two
classes based on a small number of samples will also separate new
samples.

The speed and error rates we have achieved on the NIST data-
base are about the same as those for advanced neural networks
(without special hardware). The advantages here are simplicity,
automation and portability, which is due to built-in invariance and
the rich world of spatial relationships. We are currently extending
the method to other visual recognition problems involving grey-
level images and structured backgrounds.
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