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Abstract: An inherent property of objects in the world is that they

only exist as meaningful entities over certain ranges of scale. If one aims

at describing the structure of unknown real-world signals, then a multi-

scale representation of data is of crucial importance. Whereas conventional

scale-space theory provides a well-founded framework for dealing with im-

age structures at di�erent scales, this theory does not directly address the

problem of how to select appropriate scales for further analysis. This chap-

ter outlines a systematic methodology of how mechanisms for automatic

scale selection can be formulated in the problem domains of feature detec-

tion and image matching (
ow estimation), respectively.

For feature detectors expressed in terms of Gaussian derivatives, hy-

potheses about interesting scale levels can be generated from scales at which

normalized measures of feature strength assume local maxima with respect

to scale. It is shown how the notion of 
-normalized derivatives arises by

necessity given the requirement that the scale selection mechanism should

commute with rescalings of the image pattern. Speci�cally, it is worked

out in detail how feature detection algorithms with automatic scale selec-

tion can be formulated for the problems of edge detection, blob detection,

junction detection, ridge detection and frequency estimation. A general

property of this scheme is that the selected scale levels re
ect the size of

the image structures.

When estimating image deformations, such as in image matching and

optic 
ow computations, scale levels with associated deformation estimates

can be selected from the scales at which normalized measures of uncertainty

assume local minima with respect to scales. It is shown how an integrated

scale selection and 
ow estimation algorithm has the qualitative properties

of leading to the selection of coarser scales for larger size image structures

and increasing noise level, whereas it leads to the selection of �ner scales

in the neighbourhood of 
ow �eld discontinuities.

Keywords: scale, scale-space, scale selection, normalized derivative, feature

detection, blob detection, corner detection, frequency estimation, Gaussian

derivative, stereo matching, optic 
ow, multi-scale representation, com-

puter vision
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1.1 Introduction

An inherent property of objects in the world is that they only exist as

meaningful entities over certain ranges of scale. If one aims at describing the

structure of unknown real-world signals, then a multi-scale representation

of data is of crucial importance. Whereas conventional scale-space theory

provides a well-founded framework for dealing with image structures at

di�erent scales, this theory does not directly address the problem of how

to select appropriate scales for further analysis.

This chapter outlines a systematic methodology for formulating mecha-

nisms for automatic scale selection in the domains of feature detection and

image matching.

1.2 Multi-scale di�erential image geometry

A natural and powerful framework for representing image data at the earli-

est stages of visual processing is by computing di�erential geometric image

descriptors at multiple scales [Koenderink, 1990; Koenderink et al., 1992].

This section summarizes essential components of this scale-space theory

[Lindeberg, 1994d], which also constitutes the vocabulary for expressing

the scale selection mechanisms.

1.2.1 Scale-space representation

Given any continuous signal g : RD ! R, its linear scale-space representa-

tion L : RD � R+ ! R is de�ned as the solution to the di�usion equation

@tL =
1

2
r

2L =
1

2

DX
d=1

@xdxdL (1.1)

with initial condition L(x; 0) = g(x). Equivalently, this family can be

de�ned by convolution with Gaussian kernels h(x; t) of various width t

L(x; t) = h(x; t) � g(x); (1.2)

where h : RD �R+ ! R is given by

h(x; t) =
1

(2�t)D=2
exp

�
�x

2
1 + : : :+ x2D

2t

�
(1.3)

and x = [x1; : : : ; xD]
T
. There are several results [Koenderink, 1984], [Koen-

derink and van Doorn, 1987], [Koenderink and van Doorn, 1990], [Koen-

derink and van Doorn, 1992], [Babaud et al., 1986], [Yuille and Poggio,

1986], [Hummel and Moniot, 1989], [Lindeberg, 1990], [Lindeberg, 1994b],
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[Lindeberg, 1994d], [Lindeberg, 1997a], [Florack et al., 1992], [Florack,

1993], [Florack et al., 1993], [Florack, 1997], [Pauwels et al., 1995], [Sporring

et al., 1996] stating that within the class of linear transformations the Gaus-

sian kernel is the unique kernel for generating a scale-space. The conditions

that specify the uniqueness are essentially linearity and shift invariance

combined with di�erent ways of formalizing the notion that new struc-

tures should not be created in the transformation from a �ner to a coarser

scale (see also [Lindeberg, 1994c], [Lindeberg, 1996e], [Lindeberg and ter

Haar Romeny, 1994a], [Lindeberg and ter Haar Romeny, 1994b], [Sporring

et al., 1996] for reviews).

1.2.2 Gaussian derivative operators

From the scale-space representation, we can at any level of scale de�ne

scale-space derivatives by

Lx�(x; t) = (@x�L)(x; t) = @x� (h(x; t) � g(x)) (1.4)

where � = [�1; : : : ; �D]
T
and @x�L = Lx1�1 :::xD�D constitute multi-index

notation for the derivative operator @x� . Since di�erentiation commutes

with convolution, the scale-space derivatives can be written

Lx�(x; t) = (@x�h(�; t)) � g(x) (1.5)

and correspond to convolving the original image g with Gaussian derivate

kernels @x�h. Figure 1.1 shows a few examples of such Gaussian derivate

operators.

The Gaussian derivatives provide a compact way to characterize the

local image structure around a certain image point at any scale. With

access to Gaussian derivative responses of all orders at one image point

x0, we can for any x in a neighbourhood of x0 reconstruct the original

scale-space representation by a local Taylor expansion. With �� denoting

the Taylor coeÆcient of order �, this reconstruction can be written

L(x; t) =
X
�

��Lx�(x0; t) (x� x0)�: (1.6)

Truncating this representation to derivatives up to order N , results in a

so-called N-jet representation [Koenderink and van Doorn, 1987].

1.2.3 Directional derivatives and linear combinations of Gaussian deriva-

tives

The Gaussian derivatives according to (1.4) correspond to partial deriva-

tives along the Cartesian coordinate directions. Using the well-known ex-

pression for the nth-order directional derivative @n�� of a function L in any
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Figure 1.1: Gaussian derivative kernels up to order three in the two-dimensional

case.

direction �,

@n�� L = (cos� @x + sin� @y)
n L: (1.7)

we can express a directional derivative in any direction (cos�; sin�) as a

linear combination of the Cartesian Gaussian derivatives. (This property is

sometimes referred to as \steerability" [Freeman and Adelson, 1990],[Per-

ona, 1992].) For orders up to three, the explicit expressions are

@�� L = cos�Lx + sin�Ly; (1.8)

@2�� L = cos2 �Lxx + 2 cos� sin�Lxy + sin2 �Lyy (1.9)

@3�� L = cos3 �Lxxx + 3 cos2 � sin�Lxxy + 3 cos� sin2 �Lxyy + sin3 �Lyyy:

(1.10)

Figure 1.2 shows an example of computing �rst- and second-order direc-

tional derivatives in this way, based on the Gaussian derivative operators

in Figure 1.1.
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Figure 1.2: a First- and b second-order directional derivative approximation ker-

nels in the 22:5 degree direction computed as a linear combination of the Gaussian

derivative operators.

More generally, and with reference to (1.6), it is worth noting that the

Gaussian derivatives at any scale (including the zero order derivative) serve

as a complete linear basis, implying that any linear �lter can be expressed

as a (possibly in�nite) linear combination of Gaussian derivatives.

1.2.4 Di�erential invariants

A problem with image descriptors as de�ned from (1.4) and (1.7) is that

they depend upon the orientation of the coordinate system. A simple way

to de�ne image descriptors that are invariant to rotations in the image

plane, is by considering directional derivatives in a preferred coordinate

system aligned to the local image structure.

level 
curve

y

x

v
u

grad L

Figure 1.3: In the (u; v) coordinate system, the v-direction is at every point

parallel to the gradient direction of L, and the u-direction is parallel to the tangent

to the level curve.

One such choice of preferred directions is to introduce a local orthonor-

mal coordinate system (u; v) at any point P0, with the v-axis parallel

to the gradient direction at P0, and the u-axis perpendicular, i.e. ev =

(cos'; sin')T and eu = (sin';� cos')T , where

evjP0 =
�

cos'

sin'

�
=

1q
L2x + L2y

�
Lx
Ly

�������
P0

: (1.11)
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In terms of Cartesian coordinates, the corresponding local directional deriva-

tive operators can then be written

@u = sin'@x � cos'@y: @v = cos'@x + sin'@y; (1.12)

and for the lowest orders of di�erentiation we have

Lu = 0

Lv =
q
L2x + L2y (1.13)

L2vLuu = LxxL
2
y � 2LxyLxLy + LyyL

2
x

L2vLuv = LxLy(Lxx � Lyy)� (L2x � L2y)Lxy

L2vLvv = L2xLxx + 2LxLyLxy + L2yLyy (1.14)

L3vLuuu = Ly(L
2
yLxxx + 3L2xLxyy)

� Lx(L
2
xLyyy + 3L2yLxxy)

L3vLuuv = Lx(L
2
yLxxx + (L2x � 2L2y)Lxyy)

+ Ly(L
2
xLyyy + (L2y � 2L2x)Lxxy)

L3vLuvv = Ly(L
2
xLxxx + (L2y � 2L2x)Lxyy)

+ Lx((2L
2
y � L2x)Lxxy � L2yLyyy)

L3vLvvv = Lx(L
2
xLxxx + 3L2yLxyy)

+ Ly(3L
2
xLxxy + L2yLyyy): (1.15)

By de�nition, these di�erential de�nition are invariant under rotations of

the image plane, and this (u; v)-coordinate system is characterized by the

�rst-order directional derivatives Lu being zero.

Another natural choice of a preferred coordinate system is to align a

local (p; q)-coordinate system to the eigenvectors of the Hessian matrix.

To express directional derivatives in such coordinates, characterized by the

mixed second-order derivative Lpq being zero, we can rotate the coordinate

system by an angle  de�ned by

cos j(x0;y0) =

vuuut1

2

0
@1 + Lxx � Lyyq

(Lxx � Lyy)2 + 4L2xy

1
A
�������
(x0;y0)

(1.16)

sin j(x0;y0) = (sgnLxy)

vuuut1

2

0
@1� Lxx � Lyyq

(Lxx � Lyy)2 + 4L2xy

1
A
�������
(x0;y0)

(1.17)
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and de�ne unit vectors in the p- and q-directions by ep = (sin ;� cos )

and eq = (cos ; sin ) with associated directional derivative operators

@p = sin @x � cos @y; @q = cos @x + sin @y: (1.18)

Then, it is straightforward to verify that this de�nition implies that

Lpq = @p@qL = (cos @x + sin @y) (sin @x � cos @y)L

= cos sin (Lxx � Lyy)� (cos2  � sin2  )Lxy = 0:
(1.19)

A more general class of (non-linear) di�erential invariants will be considered

in Sect. 1.3.2.

1.2.5 Windowed spectral moment descriptors

The di�erential invariants de�ned so far depend upon the local di�erential

geometry at any given image point. One way of de�ning regional image de-

scriptors, which re
ect the intensity distribution over image patches, is by

considering windowed spectral moment descriptors (see also [Big�un et al.,

1991; Rao and Schunk, 1991; Lindeberg, 1994d]). Using Plancherel's rela-

tion Z
!2R2

f̂1(!) f̂
�
2 (!) d! = (2�)2

Z
x2R2

f1(x) f
�
2 (x) dx; (1.20)

where ĥi(!) denotes the Fourier transform of hi(x) (with ! = 2�k as

variable in the frequency domain) and by letting f1 = Lx� and f2 = Lx� ,

we haveZ
!2R2

(i!)j�j+j�jjL̂j2(!) d! = (2�)2
Z
x2R2

Lx�(x)Lx� (x) dx: (1.21)

Let us next introduce a Gaussian window function h(�; s), depending on an
integration scale parameter s, in addition to the local scale parameter t of

the ordinary scale-space representation. Then, we can de�ne the following

windowed spectral moments

�20(x; t; s) =

Z
�2R2

L2x(�; t)h(x� �; s) d�;

�11(x; t; s) =

Z
�2R2

Lx(�; t)Ly(�; t)h(x� �; s) d�; (1.22)

�02(x; t; s) =

Z
�2R2

L2y(�; t)h(x� �; s) d�;

and higher order spectral moment descriptors can be de�ned in an analo-

gous fashion.
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Scale-space representation Edges Scale-space representation Ridges

Figure 1.4: Edges and ridges computed at di�erent scales in scale-space (scale

levels t = 1:0, 4:0, 16:0, 64:0 and 256:0 from top to bottom) using a di�erential

geometric edge detector and ridge detector, respectively. (Image size: 256*256

pixels.)
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1.2.6 The scale-space framework for a visual front-end

The image descriptors de�ned in Section 1.2.2{Section 1.2.5 provide a use-

ful basis for expressing a large number of early visual operations, including

image representation, feature detection, stereo matchning, optic 
ow and

shape estimation. There is also a close connection to biological vision. Neu-

rophysiological studies by Young [1985, 1987] have shown that there are re-

ceptive �elds in the mammalian retina and visual cortex, which can be well

modelled by Gaussian derivatives up to order four. In these respects, the

scale-space representation with its associated Gaussian derivative operators

can be seen as a canonical idealized model of a visual front-end.

When computing these descriptors at multiple scales, however, as is

necessary to capture the complex multi-scale nature of our world, one can

expect these descriptors to accurately re
ect interesting image structures

at certain scales, while the responses may be less useful at other scales. To

simplify the interpretation tasks of later processing stages, a key problem

of a visual front-end (in addition to making image structures more explicit

by computing di�erential image descriptors at multiple scales) is to provide

hypothesis about how to select locally appropriate scales for describing the

data set.

1.2.7 The need for automatic scale selection

To illustrate the need for an explicit mechanism for automatic scale selec-

tion, let us �rst consider the problem of detecting edges. The left column in

�gure 1.4 shows the result of applying a standard edge detector (described

in Section 1.4.1) to an image, which have been smoothed by convolution

with Gaussian kernels of di�erent widths.

As can be seen, di�erent types of edge structures give rise to edge curves

at di�erent scales. For example, the shadow of the arm only appears as

a connected edge curve at coarse scales. If such coarse scales are used at

the �nger tip, however, the shape distortions due to scale-space smoothing

will be substantial. Hence, to extract this edge with a reasonable trade-o�

between detection and localization properties, the only reasonable choice

is to allow the scale levels to vary along the edge.

The right column in �gure 1.4 shows corresponding results for a ridge

detector (described in Section 1.4.2). Di�erent types of ridge structures

give rise to qualitatively di�erent types of ridge curves depending on the

scale level. The �ngers respond at t � 16, whereas the arm as a whole is

extracted as a long ridge curve at t � 256.

For these reasons, and since the choice of scale levels crucially a�ects

the performance of any feature detector, and di�erent scale levels will,
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in general, be required in di�erent parts of the image, it is essential to

complement feature detectors by explicit mechanisms which automatically

adapt the scale levels to the local image structure.

1.3 A general scale selection principle

A powerful approach to perform local and adaptive scale selection is by

detecting local extrema over scales of normalized di�erential entities. This

chapters presents a general theory by �rst introducing the notion of nor-

malized derivatives, and then showing how local extrema over scales of

normalized di�erential entities re
ect the characteristic size of correspond-

ing image structures.

1.3.1 Normalized derivatives and intuitive idea for scale selection

A well-known property of the scale-space representation is that the ampli-

tude of spatial derivatives

Lx�(�; t) = @x�L(�; t) = @x�1
1
: : : @x�DD

L(�; t)
in general decrease with scale, i.e., if a signal is subject to scale-space

smoothing, then the numerical values of spatial derivatives computed from

the smoothed data can be expected to decrease. This is a direct conse-

quence of the non-enhancement property of local extrema, which means

that the value at a local maximum cannot increase, and the value at a

local minimum cannot decrease [Babaud et al., 1986; Lindeberg, 1994d]. In

other words, the amplitude of the variations in a signal will always decrease

with scale.

As a simple example of this, consider a sinusoidal input signal of some

given angular frequency !0 = 2�k0; for simplicity in one dimension,

g(x) = sin!0x: (1.23)

It is straightforward to show that the solution of the di�usion equation is

given by

L(x; t) = e�!
2
0t=2 sin!0x: (1.24)

Thus, the amplitude of the scale-space representation, Lmax, as well as

the amplitude of the mth order smoothed derivative, Lxm;max, decrease

exponentially with scale

Lmax(t) = e�!
2
0t=2; Lxm;max(t) = !m0 e�!

2
0t=2:

Let us next introduce a 
-normalized derivative operator de�ned by

@�;
�norm = t
=2 @x; (1.25)
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0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

scale t

L�;max(t)

!3 = 2.0 !2 = 1.0

!1 = 0.5

Figure 1.5: The amplitude of �rst order normalized derivatives as function of

scale for sinusoidal input signals of di�erent frequency (!1 = 0:5, !2 = 1:0 and

!3 = 2:0).

which corresponds to the change of variables

� =
x

t
=2
: (1.26)

For the sinusoidal signal, the amplitude of an mth order normalized deriva-

tive as function of scale is given by

L�m;max(t) = tm
=2 !m0 e�!
2
0t=2; (1.27)

i.e., it �rst increases and then decreases. Moreover, it assumes a unique

maximum at tmax;L�m = 
m
!2
0

. If we de�ne a scale parameter � of dimen-

sion length by � =
p
t and introduce the wavelength �0 of the signal by

�0 = 2�=!0, we can see that the scale at which the amplitude of the 
-

normalized derivative assumes its maximum over scales is proportional to

the wavelength, �0, of the signal:

�max;L�m =

p

 m

2�
�0: (1.28)

The maximum value over scales is

L�m;max(tmax;L�m ) =
(
m)
m=2

e
m=2
!
(1�
)m
0 : (1.29)

In the case when 
 = 1, this maximum value is independent of the frequency

of the signal (see �gure 1.5), and the situation is highly symmetric, i.e.,

given any scale t0, the maximally ampli�ed frequency is given by !max =p
m=t0, and for any !0 the scale with maximum ampli�cation is tmax =

m=!20. In other words, for normalized derivatives with 
 = 1 it holds that

sinusoidal signals are treated in a similar (scale invariant) way independent

of their frequency (see �gure 1.5).
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1.3.2 A general principle for automatic scale selection

The example shows that the scale at which a normalized derivative assumes

its maximum over scales is for a sinusoidal signal proportional to the wave-

length of the signal. In this respect, maxima over scales of normalized

derivatives re
ect the scales over which spatial variations take place in the

signal. This property is, however, not restricted to sine wave patterns or

to image measurements in terms of linear derivative operators of a certain

order. Contrary, it applies to a large class of image descriptors which can

be formulated as multi-scale di�erential invariants expressed in terms of

Gaussian derivatives. In [Lindeberg, 1994d], the following scale selection

principle was proposed:

In the absence of other evidence, assume that a scale level, at

which some (possibly non-linear) combination of normalized deriva-

tives assumes a local maximum over scales, can be treated as re-


ecting a characteristic length of a corresponding structure in the

data.

1.3.3 Properties of the scale selection principle

A basic justi�cation for the abovementioned statement can be obtained

from the fact that for a large class of (possibly non-linear) combinations

of normalized derivatives it holds that maxima over scales have a nice

behaviour under rescalings of the intensity pattern. If the input image is

rescaled by a constant scaling factor s, then the scale at which the maximum

is assumed will be multiplied by the same factor (if measured in units of � =p
t). This is a fundamental requirement on a scale selection mechanism,

since it guarantees that image operations commute with size variations.

Scaling properties. For two signals g and g0 related by

g(x) = g0(sx); (1.30)

the corresponding normalized derivatives de�ned from the scale-space rep-

resentations L and L0 on the two domains are related according to

@�mL(x; t) = sm(1�
) @�0mL
0(x0; t0); (1.31)

and when 
 = 1, the normalized derivatives are equal at corresponding

points (x; t) and (x0; t0) = (sx; s2t).

When 
 6= 1, a weaker scale invariance properties holds. Let us consider

a homogeneous polynomial di�erential invariant DL of the form

DL =

IX
i=1

ci

JY
j=1

Lx�ij ; (1.32)
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where the sum of the orders of di�erentiation in a certain term

JX
j=1

j�ij j =M (1.33)

does not depend on the index i of that term. Then, normalized di�erential

expressions in the two domains are related by

D
�normL = sM(1�
)D0

�normL

0; (1.34)

i.e., magnitude measures scale according to a power law. Local maxima

over scales are, however, still preserved

@t (D
�normL) = 0 , @t0
�D0


�normL
0
�
= 0; (1.35)

which gives suÆcient scale invariance to support the scale selection method-

ology. More generally, it can be shown that the notion of 
-normalized

derivatives arises by necessity, given natural requirements of a scale selec-

tion mechanism [Lindeberg, 1996a].

1.3.4 Interpretation of normalized derivatives

Lp-norms. For a D-dimensional signal, it can be shown that the variation

over scales of the Lp-norm of an mth order normalized Gaussian derivative

kernel is given by

kh�m(�; t)kp =
p
t
m(
�1)+D(1=p�1) kh�m(�; t)kp: (1.36)

In other words, the Lp-norm of the mth order Gaussian derivative kernel

is constant over scales if and only if

p =
1

1 + m
D (1� 
)

: (1.37)

Hence, the 
-normalized derivative concept be interpreted as an Lp-normalization

of the Gaussian derivative kernels over scales for a speci�c value of p, which

depends upon 
, the dimension as well as the order m of di�erentiation.

The perfectly scale invariant case 
 = 1 gives p = 1 for all orders m and

corresponds to L1-normalization of the Gaussian derivative kernels.

Power spectra. For a signal g : R2 ! R having a power spectrum of the

form

Sg(!1; !2) = (f̂ f̂�)(!1; !2) = j!j�2� = (!21 + !22)
��; (1.38)
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it can be shown that the variation over scales of the following energy mea-

sure

PL(�; t) =

Z
x2R2

jrL(x; t)j2 dx: (1.39)

is given by

Pnorm(�; t) = t
 PL(�; t) � t�+
�2: (1.40)

This expression is independent of scale if and only if � = 2 � 
. In other

words, in the two-dimensional case the normalized derivative model is neu-

tral with respect to power spectra of the form (and natural images often

have power spectra of this form [Field, 1987])

Sg(!) = j!j�2(2�
): (1.41)

1.4 Feature detection with automatic scale selection

This section shows how the general principle for automatic scale selection

described in Section 1.3.2 can be integrated with various types of feature

detectors.

1.4.1 Edge detection

At any scale in scale-space, let us de�ne an edge point as a point at which

the second directional derivative Lvv in the v-direction is zero, and the

third directional derivative Lvvv is negative:�
Lvv = 0;

Lvvv < 0;
(1.42)

The edges in �gure 1.4 have been computed according to this de�nition

[Canny, 1986], [Korn, 1988], [Lindeberg, 1993b], [Lindeberg, 1994d].

In view of the scale selection principle, a natural extension of this no-

tion of non-maximum suppression is by de�ning a scale-space edge a curve

on this edge surface, such that some measure of edge strength E
�normL
assumes locally maxima with respect to scale on this curve.8>><

>>:

@t(E
�normL(x; y; t)) = 0;

@tt(E
�normL(x; y; t)) < 0;

Lvv(x; y; t) = 0;

Lvvv(x; y; t) < 0:

(1.43)

Based on the 
-parameterized normalized derivative concept in, we shall

here consider the following two edge strength measures:

G
�normL = t
 L2v; (1.44)

T
�normL = �t3 
 L3v Lvvv: (1.45)
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Qualitative properties. For a di�use step edge, de�ned as the primitive

function of a one-dimensional Gaussian,

ft0(x; y) =

Z x

x0=�1

h(x0; t0) dx
0;

each of these edge strength measures assumes a unique maximum over

scales at tG
�norm = tT
�norm = 

1�
 t0. Requiring this maximum to occur

at t0 gives 
 =
1
2 .

For a local model of an edge bifurcation, expressed as

L(x; t) = 1
4x

4 + 3
2x

2(t� tb) +
3
4 (t� tb)

2;

with edges at x1(t) = (tb�t)1=2 when t � tb, we have (G
�normL)(x1(t); t) =
4 t
 (tb � t)3, and the selected scales are tG
�norm = 


3+
 tb and tT
�norm =
3


5+3
 tb.

On other words, the scale selection method has the qualitative property

of re
ecting the degree of di�useness of the edge. Moreover, since the edge

strength decreases rapidly at a bifurcation, the selected scales will tend

away from bifurcation scales.

Results of edge detection. Let us now apply the integrated edge detection

scheme to di�erent real-world images. In brief, edges are extracted as fol-

lows [Lindeberg, 1996b]: The di�erential descriptors in the edge de�nition

(1.43) are rewritten in terms of partial derivatives in Cartesian coordinates

and are computed at a number of scales in scale-space. Then, a polygon

approximation is constructed of the intersections of the two zero-crossing

surfaces of Lvv and @t(E
�norm) that satisfy the sign conditions Lvvv < 0

and @t(E
�norm) < 0. Finally, a signi�cance measure is computed for each

edge by integrating the normalized edge strength measure along the curve

H(�) =

Z
(x; t)2�

q
(G
�normL)(x; t) ds; (1.46)

T (�) =

Z
(x; t)2�

4

q
(T
�normL)(x; t) ds: (1.47)

Fig. 1.6 shows the result of applying this scheme to two real-world images.

As can be seen, the sharp edges due to object boundaries are extracted as

well as the di�use edges due to illumination e�ects (the occlusion shadows

on the arm and the cylinder, the cast shadow on the table, as well as the

re
ection on the table). (Recall from �g. 1.4 that for this image it is im-

possible to capture the entire shadow edge at one scale without introducing

severe shape distortions at the �nger tip.)
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Fig. 1.7 illustrates the ranking on signi�cance obtained from the inte-

grated edge strength along the curve. Whereas there are inherent limita-

tions in using such an entity as the only measure of saliency, note that this

measure captures essential information.

Fig. 1.8 gives a three-dimensional illustration of how the selected scale

levels vary along the edges. The scale-space edges have been drawn as

three-dimensional curves in scale-space, overlayed on a low-contrast copy

of the original grey-level image in such a way that the height over the image

plane represents the selected scale. Observe that coarse scales are selected

for the di�use edge structures due to illumination e�ects and that �ner

scales are selected for the sharp edge structures due to object boundaries.

Fig. 1.9 shows the result of applying edge detection with scale selection

based on local maxima over scales of T
�normL to an image containing a

large amount of �ne-scale information. From a �rst view, these results may

appear very similar to the result of traditional edge detection at a �xed

(very �ne) scale. A more detailed study, however, reveals that a number

original grey-level image all scale-space edges the 100 strongest edge curves

Figure 1.6: The result of edge detection with automatic scale selection based on

local maxima over scales of the �rst order edge strength measure G
�normL with


 = 1

2
. The middle column shows all the scale-space edges, whereas the right

column shows the 100 edge curves having the highest signi�cance values. Image

size: 256 � 256 pixels.
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50 most signi�cant edges 20 most signi�cant edges 10 most signi�cant edges

Figure 1.7: Illustration of the ranking on saliency obtained from the integrated


-normalized gradient magnitude along the scale-space edges. Here, the 50, 20,

and 10 most signi�cant edges, respectively, have been selected from the arm image.

Figure 1.8: Three-dimensional view of the 10 most signi�cant scale-space edges

extracted from the arm image. From the vertical dimension representing the se-

lected scale measured in dimension length (in units of
p
t), it can be seen how

coarse scales are selected for the di�use edge structures (due to illumination ef-

fects) and that �ner scales are selected for the sharp edge structures (the object

boundaries).
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original grey-level image the 1000 most salient scale-space edges

Figure 1.9: The 1000 strongest scale-space edges extracted using scale selection

based on local maxima over scales of T
�normL (with 
 = 1

2
). (Image size:

256 � 256 pixels.)

of shadow edges are extracted, which would be impossible to detect at the

same scale as the dominant �ne-scale information. In this context, it should

be noted that the �ne-scale edge detection in this case is not the result of

any manual setting of tuning parameters. It is a direct consequence of the

scale-space edge concept, and is the result of applying the same mechanism

as extracts coarse scale levels for di�use image structures.

Summary. To conclude, for both these measures of edge strength, this

scale selection scheme has the desirable property of adapting the scale levels

to the local image structure such that the selected scales re
ect the degree

of di�useness of the edge.

1.4.2 Ridge detection

By a slight reformulation, ridge detection algorithms can be expressed in

a similar way. If we follow a di�erential geometric approach, and de�ne

a bright (dark) ridge point as a point for which the brightness assumes

a maximum (minimum) in the main eigendirection of the Hessian matrix

[Haralick, 1983; Eberly et al., 1994; Koenderink and van Doorn, 1994; Lin-

deberg, 1994c], then in the (p; q)-system this de�nition can be stated as



1.4 FEATUREDETECTIONWITH AUTOMATIC SCALE SELECTION21

8<
:

Lp = 0;

Lpp < 0;

jLppj � jLqq j;
or

8<
:

Lq = 0;

Lqq < 0;

jLqqj � jLppj:
In the (u; v)-system, this condition can for non-degenerate L equivalently

be written �
Luv = 0;

L2uu � L2vv > 0;
(1.48)

where the sign of Luu determines the polarity; Luu < 0 corresponds to

bright ridges, and Luu > 0 to dark ridges. Figure 1.4 shows the results of

applying this ridge detector at di�erent scales.

In analogy with Section 1.4.1, let us next sweep out a ridge surface in

scale-space by applying this ridge de�nition at all scales. Then, given a

measure R
�normL of normalized ridge strength, de�ne a scale-space ridge

as a curve on this surface along which the ridge strength measure assumes

local maxima with respect to scale.�
@t(RnormL(x; y; t)) = 0;

@tt(RnormL(x; y; t)) < 0;�
Lp(x; y; t) = 0;

Lpp(x; y; t) < 0:
(1.49)

Here, we consider the following ridge strength measures:

N
�normL = t4 
 (L2pp � L2qq)
2 = t4 
(Lxx + Lyy)

2((Lxx � Lyy)
2 + 4L2xy)

(1.50)

Qualitative properties. For a Gaussian ridge de�ned by g(x; y) = h(x; t0),

it can be shown that the selected scale will then be tR
�norm
= 2 


3�2 
 t0.

Requiring this scale to be tR
�norm
= t0, gives 
 =

3
4 .

Results of ridge detection. Fig. 1.10 shows the result of applying such a

ridge detector to two images and selecting the 100 and 10 strongest bright

ridges, respectively, by integrating a measure of normalized ridge strength

along each curve.

For the arm image, observe how a coarse-scale descriptor is extracted

for the arm as a whole, whereas that the individual �ngers give rise to ridge

curves at �ner scales.

1.4.3 Blob detection

The Laplacian operator r2L = Lxx + Lyy is a commonly used entity for

blob detection, since it gives a strong response at the center of blob-

like image structures [Marr, 1982; Blostein and Ahuja, 1989; Voorhees and
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original grey-level image 100 strongest bright ridges 10 strongest bright ridges

Figure 1.10: The 100 and 10 strongest bright ridges respectively extacted using

scale selection based on local maxima over scales of A
�norm (with 
 = 3

4
). Image

size: 128 � 128 pixels in the top row, and 140 � 140 pixels in the bottom row.

backprojection of ridge 1 backprojection of ridges 2{5

Figure 1.11: Alternative illustration of the �ve strongest scale-space ridges ex-

tracted from the image of the arm in �gure 1.10. Each ridge is backprojected onto

a dark copy of the original image as the union of a set of circles centered on the

ridge curve with the radius proportional to the selected scale at that point.
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Poggio, 1987]. To formulate a blob detector with automatic scale selection,

we can consider the points in scale-space at which the the square of the

normalized Laplacian

r
2
normL = t(Lxx + Lyy) (1.51)

assumes maxima with respect to space and scale. Such points are referred

to as scale-space extrema of (r2
normL)

2.

Qualitative properties. For a Gaussian blob de�ned by

g(x; y) = h(x; y; t0) =
1

2�t0
e�(x

2+y2)=2t0 (1.52)

it can be shown that the selected scale at the center of the blob is given by

@t(r
2
normL)(0; 0; t) = 0 () tr2L = t0: (1.53)

Hence, the selected scale directly re
ects the width t0 of the Gaussian blob.

Results of blob detection. Figure 1.12{and Figure1.13 shows the result of

applying this blob detector to an image of a sun
ower �eld. In �gure 1.12,

each blob feature detected as a scale-space maximum is illustrated by a

circle, with its radius proportional to the selected scale. Figure 1.13 shows

a three-illustration of the same data set, by marking the scale-space extrema

by spheres in scale-space. Observe how the size variations in the image are

captured by this structurally very simple operation.

original image scale-space maxima overlay

Figure 1.12: Blob detection by detection of scale-space maxima of the normalized

Laplacian operator: (a) Original image. (b) Circles representing the 250 scale-

space maxima of (rnormL)
2 having the strongest normalized response. (c) Circles

overlayed on image.
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Figure 1.13: Three-dimensional view of the 150 strongest scale-space maxima

of the square of the normalized Laplacian of the Gaussian computed from the

sun
ower image.

1.4.4 Corner detection

A commonly used technique for detecting junction candidates in grey-level

images is to detect extrema in the curvature of level curves multiplied by

the gradient magnitude raised to some power [Kitchen and Rosenfeld, 1982;

Koenderink and Richards, 1988]. A special choice is to multiply the level

curve curvature by the gradient magnitude raised to the power of three.

This leads to the di�erential invariant ~� = L2vLuu, with the corresponding

normalized expression

~�norm = t2
L2vLuu (1.54)

Qualitative properties. For a di�use L-junction g(x1; x2) = �(x1; t0) �(x2; t0)

modelled as the product of two di�use step edges �(xi; t0) =
R xi
x0=�1

h(x0; t0) dx
0,

it can be shown that variation of ~�norm at the origin is given by

j~�norm(0; 0; t)j = t2


8�2(t0 + t)2
: (1.55)



1.4 FEATUREDETECTIONWITH AUTOMATIC SCALE SELECTION25

Figure 1.14: Three-dimensional view of scale-space maxima of ~�2norm computed

for a large scale corner with superimposed corner structures at �ner scales.

When 
 = 1, this entity increases monotonically with scale, whereas for


 2]0; 1[, ~�norm(0; 0; t) assumes a unique maximum over scales at t~� =



1�
 t0. On the other hand, for a non-uniform Gaussian blob L(x1; x2; t) =

h(x1; t1 + t)h(x2; t2 + t), the normalized response always decreases with

scale at suÆciently coarse scales.

This analysis indicates that when 
 = 1, ~�2norm can be expected to

increase with scales when a single corner model of in�nite extent constitutes

a reasonable approximation, whereas ~�2norm can be expected to decrease

with scales when so much smoothing is applied that the overall shape of

the object is substantially distorted.

Hence, selecting scale levels (and spatial points) where ~�2norm assumes

maxima over scales can be expected to give rise to scale levels in the in-

termediate scale range (where a �nite extent junction model constitutes a

reasonable approximation) and the selected scale levels re
ect thus re
ect

over how large region a corner model is valid. In practice, a slightly smaller

value of 
 = 7=8 is used.
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Results of corner detection. Figure 1.14 shows the result of detecting

scale-space extrema from an image with corner structures at multiple scales.

Observe that a coarse scale response is obtained for the large scale corner

structure as a whole, whereas the superimposed corner structures of smaller

size give rise to scale-space maxima at �ner scales. (More results on real

images will be shown in Section 1.5.)

1.4.5 Local frequency estimation

To extend the abovementioned application of the scale selection method-

ology from the detection of sparse image features to the computation of

dense image descriptors, a natural starting point is to consider the theory

of quadrature �lter pairs de�ned (from a Hilbert transform) in such a way

as to be phase independent for any sine wave.

To approximate such operators within the Gaussian derivative frame-

work, we can de�ne a corresponding quasi quadrature measure in the one-

dimensional case by [Koenderink and van Doorn, 1987; Lindeberg, 1997b]

PL = L2� + CL2�� = tL2x + Ct2L2xx (1.56)

where a good choice of the parameter C is C = e=4. Note that, in order to

achieve scale invariance, it is necessary to use normalized derivatives with


 = 1 in the (inhomogeneous) linear combination of Gaussian derivatives

of di�erent order. The 
-normalized derivative concept, however, leaves a

degree of freedom, which can be parameterized by

PL = t��(tL2x + Ct2L2xx): (1.57)

To extend this entity to two-dimensional signals, we can consider

PL = t��
�
t(L2x + L2y) + C t2 (L2xx + 2L2xy + L2yy)

�
; (1.58)

RL = t��
�
t (L2x + L2y) + C t2 ((Lxx � Lyy)

2 + 4L2xy)
�
: (1.59)

Both these di�erential expressions are invariant under rotations and re-

duce to the form (1.57) for a one-dimensional signal. The second order

di�erential expression in (1.58),

S
�normL = t2 
 (L2xx + 2L2xy + L2yy) (1.60)

however, is a natural measure of the total amount of second-order infor-

mation in the signal, whereas the second order di�erential expression in

(1.59)

A
�normL = t2 
 (Lpp � Lqq)
2 = t2 
 ((Lxx � Lyy)

2 + 4L2xy) (1.61)
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is more speci�c to elongated structures (e.g. ridges). The speci�c choice of

� = 1=2 means that (1.59) and can be interpreted as a linear combination

of the edge strength measure (1.44) with 
 = 1=2 and the ridge strength

measure (1.61) with 
 = 3=4.

Qualitative properties. These di�erential expressions inherit similar scale

selection properties for sine waves as those described in Section 1.3.1; see

[Lindeberg, 1996a],[Lindeberg, 1997b] for an analysis.
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Figure 1.15: Dense scale selection by maximizing the quasi quadrature measure

(1.58) over scales: (left) Original grey-level image. (right) The variations over

scales of the quasi quadrature measure PL computed along a vertical cross-section

through the center of the image. The result is visualized as a surface plot showing

the variations over scale of the quasi quadrature measure as well as the position

of the �rst local maximum over scales.

Results of frequency estimation. Figure 1.15 shows an example result

of estimating local frequencies in this way, by detecting local maxima over

scale of PL along a vertical cross-section in an image of a periodic pattern.

Observe how the selected scale levels capture the variations in frequency

caused by the perspective e�ects.

1.5 Feature localization with automatic scale selection

The scale selection techniques presented so far are useful in the stage of

detecting image features, and the role of the scale selection mechanism is

to estimate the approximate size of the image structures the feature detec-

tor responds to. When computing features at coarse scales in scale-space,
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however, the shape distortions can be signi�cant, and in many cases it is

desirable to complement feature detection modules by an explicit feature

localization stage.

The subject of this section is show how mechanism for automatic scale

selection can be formulated in this context, by minimizing measures of

inconsistency over scales.

1.5.1 Corner localization

Given an approximate estimate x0 of the location and the size s of a corner

(computed according to Section 1.4.4), an improved estimate of the corner

position can be computed as follows [F�orstner and G�ulch, 1987; Lindeberg,

1994d]: Consider at every point x0 2 R2 in a neighbourhood of x0, the

line lx0 perpendicular to the gradient vector (rL)(x
0) = (Lx1 ; Lx2)

T (x0) at

that point:

Dx0(x) = ((rL)(x0))T (x� x0) = 0: (1.62)

Then, minimize the perpendicular distance to all lines lx0 in a neighbour-

hood of x0, weighted by the gradient magnitude, i.e. determine the point

x 2 R2 that minimizes

min
x2R2

Z
x02R2

(Dx0(x))
2
wx0(x

0; s) dx0 (1.63)

for a Gaussian window function wx0(�; s) : R2 ! R with integration scale s

set from the detection scale ttilde� of the corner and centered at the candi-

date junction x0. After expansion, this minimization problem be expressed

as a standard least squares problem

min
x2R2

xTAx� 2xT b+ c () Ax = b; (1.64)

where x = (x1; x2)
T , and A, b, and c are determined by the local statistics

of the gradient directions rL(�; t) at scale t in a neighbourhood of x0
(compare with (1.22))

A(x; t; s) =

Z
x02R2

(rL)(x0) (rL)T (x0)wx0(x
0; s) dx0;

b(x; t; s) =

Z
x02R2

(rL)(x0) (rL)T (x0)x0 wx0(x
0; s) dx0;

c(x; t; s) =

Z
x02R2

x0
T
(rL)(x0) (rL)T (x0)x0wx0(x

0; s) dx0:

(1.65)
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1.5.2 Scale selection principle for feature localization

To express a scale selection mechanism for this corner localizer, let us ex-

tend the minimization problem (1.64) from a single scale to optimization

over multiple scales [Lindeberg, 1994a]

min
t2R+

min
x2R2

xTAx� 2xT b+ c

norm(t)
= min

t2R+

min
x2R2

c� bTA�1b

traceA
(1.66)

and introduce a normalization factor norm(t) to relate minimizations at

di�erent scales. The particular choice of norm(t) = traceA implies that

the normalized residual

~r = min
x2R2

R
x02R2

��((rL)(x0))T (x � x0)
��2 wx0(x

0; s) dx0R
x02R2 j(rL)(x0)j2 wx0(x

0; s) dx0
(1.67)

has dimension [length]2 can be interpreted as a weighted estimate of the

localization error. Speci�cally, scale selection according to (1.66), by mini-

mizing the normalized residual ~r (1.67) over scales, corresponds to selecting

the scale that minimizes the estimated inaccuracy in the localization esti-

mate.

T -junction (t0 = 0:0) signature ~dmin estimated position
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Figure 1.16: Corner localization by minimizing the normalized residuals over

scales for two corner structures. A basic property of the scale selection mechanism

is that an increase in the noise level implies that the minimum over scales is

assumed at a coarser scale.
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Qualitative e�ects. Figure 1.16 shows the result of performing corner

localization in this way, by minimizing the normalized residual ~r over scales

for two corner structures. Observe how an increase in the noise level implies

that the minimum over scales is assumed at a coarser scale.
original image 100 strongest junctions

Figure 1.17: Results of composed two-stage junction detection followed by junc-

tion localization. (left) Original grey-level image. (right) The 100 strongest junc-

tion responses ranked according to the scale-space maxima of ~�2norm and illustrated

by circles with their radii proportional to the detection scales of the junction re-

sponses.

Results of corner localization. Figure 1.17 shows the result of integrating

this corner localization module with the corner detector in Section 1.4.4.

The resulting two-stage corner automatically adapts its detection scales

and localization scales to size variations and noise variations in the image

structures. In addition, the region of interest associated with each corner

is useful for purposes such as matching.

Edge localization. In [Lindeberg, 1994d], [Lindeberg, 1996a] it is outlined

how minimization over scales of a similar normalized residual applies to the

problem of edge localization.

1.6 Stereo matching with automatic scale selection

This section shows how a scale selection mechanism can be formulated

for a di�erential stereo matchning scheme expressed within the Gaussian

derivative framework. With appropriate modi�cations, similar ideas apply

to the problem of 
ow estimation.
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1.6.1 Background: Least squares di�erential stereo matching

Let us assume that the 
ow �eld between the scale-space representations

L and R of two images can be approximated by a constant 
ow �eld v

over the support region of a window function w. Following [Lukas and

Kanade, 1981], [Bergen et al., 1992], [F�orstner, 1993], [Lindeberg, 1995],

[Lindeberg, 1996d] and several others, consider the discrete form of the

motion constraint equation [Horn and Schunck, 1981]

(rL)(�)T (��) + (L(�)�R(�)) = O(j��j2): (1.68)

and integrate the square of this relation using w as window function. Af-

ter expansion (and dropping the arguments) this gives the least squares

problem

min
v2R2

vTAv + 2bT v + c; (1.69)

where A, b, and c are de�ned by

A =

Z
�2R2

(rL)(rL)T w d�

b =

Z
�2R2

(R� L) (rL)w d�

c =

Z
�2R2

(R� L)2 w d�:

(1.70)

If we interpret R�L as a discrete approximation to a temporal derivative,

these image descriptors fall within the class of windowed spectral moments

in (1.22). Assuming that A according to (??) is non-degenerate, the explicit

solution of the 
ow estimate is

v = �A�1b: (1.71)

1.6.2 Scale selection principle for estimating image deformations

When implementing this scheme in practice, it is natural to express it

within a coarse-to-�ne multi-scale framework. When performing image

matching from coarse to �ne scales, however, it is not obvious what should

be the �nest scales. If we attempt to match image features beyond a

certain resolution, we could expect the errors in the deformation estimates

to increase rather than to decrease.

In analogy with Section 1.5.2, a natural way to formulate a scale selec-

tion mechanism for the di�erential stereo matching scheme is by extending

the least squares estimation (1.69) to the two-parameter least squares prob-

lem

min
t2R+

min
v2R2

vTAv + 2bTv + c

norm(t)
; (1.72)
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where the normalization factor norm(t) determines how the information at

di�erent scales should be compared. Again, we choose norm(t) = traceA,

while one could also conceive other normalization approaches, such as the

minimum eigenvalue of A.

The resulting normalized residual is of dimension [length]2 and consti-

tutes a �rst-order approximation of the following error measure

ErL =

R
�2R2 j(rL)T (v ���)j2 w(�) d�R

�2R2 jrLj2 w(�) d�

=

R
�2R2(v ���)T (rL)(rL)T (v ���)w(�) d�R

�2R2(rL)T (rL)w(�) d�
(1.73)

where v is the regional 
ow estimate and �� a pointwise 
ow estimate

that satis�es (1.68). In other words, ErL can be seen as a measure of the

internal consistency of the estimated 
ow �eld, weighted by the gradient

magnitude.

1.6.3 Properties of matching with automatic scale selection

Selection of coarser scales for larger size image structures. Figure 1.18

shows two synthetic image patterns which have been subject to a uniform

expansion. The underlying patterns are identical except for the size of the

texture elements which di�ers by a factor of four, and 10 % white Gaussian

noise added to each image independently after the deformation. Observe

for the small size pattern in the �rst row the minima over scales in ~r are

assumed at the �nest scales, while when the size of the image structures is

increased in the second row, the minimum over scales is assumed at coarser

scales. This behaviour agrees with the intuitive notion that coarser scales

should be selected for patterns containing larger size image structures.

Selection of coarser scales with increasing noise level. In �gure 1.19 the

image pattern is the same, whereas the noise level is varied. Observe that

with an increasing amount of interfering �ne scale structures, the minimum

in ~r over scales is assumed at coarser scales. This behavior agrees with the

intuitive notion that a larger amount of smoothing is required for noisy

data than otherwise similar data with less noise.

Selection of �ner scales near discontinuities in the deformation �eld.

Figure 1.20 shows the behavior of the scale selection method in the neigh-

borhood of a discontinuity in the 
ow �eld. For a \wedding-cake type" ran-

dom dot stereo pair to which 1% white Gaussian noise has been added, the

results are shown of accumulating the scale-space signature of the normal-

ized residual in three windows with di�erent distance to the discontinuity.
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Figure 1.18: Scale-space signatures of the normalized residual ~r for synthetic

expanding patterns with structures at di�erent scales. Notice that with increasing

size of the texture elements, the minimum over scales in the normalized residual

is assumed at coarser scales.

�rst image second image signature ~r

noise: 1 %

  

                                                               

noise: 10 %

  

                                                               

Figure 1.19: Scale-space signatures of the normalized residual ~r for a synthetic

expanding pattern with di�erent amounts of added white Gaussian noise. Ob-

serve that with increasing noise level, the minimum over scales in the normalized

residual is assumed at coarser scales.
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Figure 1.20: The qualitative behaviour of the scale selection method at a dis-

continuity in the deformation �eld. The bottom row shows scale-space signatures

of the normalized residual computed in three windows with di�erent distance to

the discontinuity (with their positions indicated in the upper right image by three

squares overlayed on the pointwise di�erence between the left and the right im-

age). Observe that with decreasing distance to the discontinuity, the minimum

over scales is assumed at �ner scales.
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Figure 1.21: Selected scale levels along a central horizontal cross-section through

the wedding-cake type random dot stereo pair in �gure 1.20. Observe that distinct

minima are obtained at the two discontinuities in the disparity �eld.
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These windows have been uniformly spaced from the image center to one

of the discontinuities in the disparity �eld as shown in �gure 1.20(c).

Observe that with decreasing distance to the discontinuity, the min-

imum over scales is assumed at �ner scales. This qualitative behavior

agrees with the intuitive notion that smaller windows for matching should

be selected for image structures near a discontinuity in the disparity �eld

than when matching otherwise similar image structures in a region where

the disparity varies smoothly.

Notably, this rapid decrease of the selected scale levels could also pro-

vide a clue for detecting 
ow �eld discontinuities and signaling possible

occlusions.

1.7 Summary and conclusions

The scale-space framework provides a canonical way to model early vi-

sual operations in terms of linear and non-linear combinations of Gaussian

derivatives of di�erent order, orientation and scale. This chapter has shown

how scale-space descriptors can be complemented by mechanisms for auto-

matic scale selection

For feature detectors expressed in terms of Gaussian derivatives, hy-

potheses about interesting scale levels can be generated from scales at which

normalized measures of feature strength assume local maxima with respect

to scale. The notion of 
-normalized derivatives arises by necessity given

the requirement that the scale selection mechanism should commute with

rescalings of the image pattern. Speci�c examples have been shown how

feature detection algorithms with automatic scale selection can be formu-

lated for the problems of edge detection, blob detection, junction detection,

ridge detection and frequency estimation. A general property of this scheme

is that the selected scale levels re
ect the size of the image structures.

When estimating image deformations, such as in image matching and

optic 
ow computations, scale levels with associated deformation estimates

can be selected from the scales at which normalized measures of uncertainty

assume local minima with respect to scales. It has been illustrated how an

integrated scale selection and 
ow estimation algorithm has the qualitative

properties of leading to the selection of coarser scales for larger size image

structures and increasing noise level, whereas it leads to the selection of

�ner scales in the neighbourhood of 
ow �eld discontinuities.

Further reading. The chapter is based on an invited presentation at the

First International Conference on Scale-Space Theory in Computer Vision

held in Utrecht, Netherlands in July 1997. The material has been selected

from [Lindeberg, 1993c], [Lindeberg, 1994a], [Lindeberg, 1994d], [Linde-
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berg, 1995], [Lindeberg, 1996c], [Lindeberg, 1996a], [Lindeberg, 1996d]; see

also [Lindeberg, 1991], [Lindeberg, 1993a] for complementary works.

Applications of these scale selection principles to various problems in

computer vision have been presented in [Lindeberg and G�arding, 1993],

[Lindeberg and G�arding, 1997], [G�arding and Lindeberg, 1996], [Linde-

berg and Li, 1995], [Lindeberg and Li, 1997], [Bretzner and Lindeberg,

1998a], [Bretzner and Lindeberg, 1997], [Bretzner and Lindeberg, 1998b],

[Almansa and Lindeberg, 1996], [Almansa and Lindeberg, 1998], [Wiltschi

et al., 1997b], [Wiltschi et al., 1997a], [Lindeberg, 1997b].

For related works see [Mallat and Zhong, 1992], [Mallat and Hwang,

1992], [Korn, 1988], [Zhang and Bergholm, 1993], [Pizer et al., 1994], [Eberly

et al., 1994], [Koller et al., 1995], [J�agersand, 1995], [Kanade and Okutomi,

1994], [Battiti et al., 1990], [Niessen and Maas, 1996], [Elder and Zucker,

1996], [Yacoob and Davis, 1997].

Bibliography

A. Almansa and T. Lindeberg. Enhancement of �ngerprint images by

shape-adapted scale-space operators. In J. Sporring, M. Nielsen, L. Flo-

rack, and P. Johansen, editors, Gaussian Scale-Space Theory: Proc.

PhD School on Scale-Space Theory, Copenhagen, Denmark, May. 1996a.

Kluwer Academic Publishers.

A. Almansa and T. Lindeberg. Fingerprint enhancement by shape adap-

tation of scale-space operators with automatic scale selection. Technical

Report ISRN KTH NA/P{98/03{SE., Dept. of Numerical Analysis and

Computing Science, KTH, Stockholm, Sweden, Apr. 1998.

J. Babaud, A. P. Witkin, M. Baudin, and R. O. Duda. Uniqueness of the

Gaussian kernel for scale-space �ltering. IEEE Trans. Pattern Analysis

and Machine Intell., 8(1):26{33, 1986.

R. Battiti, E. Amaldi, and C. Koch. Computing optical 
ow across multiple

scales: An adaptive coarse-to-�ne strategy. Int. J. of Computer Vision,

6(2):133{145, 1990.

J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani. Hierarchi-

cal model-based motion estimation. In G. Sandini, editor, Proc. 2nd

European Conf. on Computer Vision, volume 588 of Lecture Notes in

Computer Science, pages 237{252, Santa Margherita Ligure, Italy, May.

1992. Springer-Verlag.



BIBLIOGRAPHY 37

J. Big�un, G. H. Granlund, and J. Wiklund. Multidimensional orientation

estimation with applications to texture analysis and optical 
ow. IEEE

Trans. Pattern Analysis and Machine Intell., 13(8):775{790, Aug. 1991.

D. Blostein and N. Ahuja. Shape from texture: integrating texture element

extraction and surface estimation. IEEE Trans. Pattern Analysis and

Machine Intell., 11(12):1233{1251, Dec. 1989.

L. Bretzner and T. Lindeberg. On the handling of spatial and temporal

scales in feature tracking. In ter Haar Romeny et al., editor, Proc. 1st

Int. Conf. on Scale-Space Theory in Computer Vision, pages 128{139,

Utrecht, The Netherlands, July 1997. Springer Verlag, New York.

L. Bretzner and T. Lindeberg. Feature tracking with automatic selection

of spatial scales. Computer Vision and Image Understanding, 1998a. (To

appear).

L. Bretzner and T. Lindeberg. Use your hand as a 3-D mouse, or, relative

orientation from extended sequences of sparse point and line correspon-

dences using the aÆne trifocal tensor. In Proc. 5th European Confer-

ence on Computer Vision (Hans Burkhardt and Bernd Neumann, eds.),

vol. 1406 of Lecture Notes in Computer Science, (Freiburg, Germany),

pp. 141{157, Springer Verlag, Berlin, June 1998.

J. Canny. A computational approach to edge detection. IEEE Trans.

Pattern Analysis and Machine Intell., 8(6):679{698, 1986.

D. Eberly, R. Gardner, B. Morse, S. Pizer, and C. Scharlach. Ridges for

image analysis. J. of Mathematical Imaging and Vision, 4(4):353{373,

1994.

J. H. Elder and S. W. Zucker. Local scale control for edge detection and

blur estimation. In Proc. 4th European Conference on Computer Vision,

volume 1064 of Lecture Notes in Computer Science, Cambridge, UK,

Apr. 1996. Springer Verlag, Berlin.

D. J. Field. Relations between the statistics of natural images and the

response properties of cortical cells. J. of the Optical Society of America,

4:2379{2394, 1987.

L. M. J. Florack. The Syntactical Structure of Scalar Images. PhD thesis,

Dept. Med. Phys. Physics, Univ. Utrecht, NL-3508 Utrecht, Netherlands,

1993.

L. M. J. Florack. Image Structure. Series in Mathematical Imaging and

Vision. Kluwer Academic Publishers, Dordrecht, Netherlands, 1997.



38 1 PRINCIPLES FOR AUTOMATIC SCALE SELECTION

L. M. J. Florack, B. M. ter Haar Romeny, J. J. Koenderink, and M. A.

Viergever. Scale and the di�erential structure of images. Image and

Vision Computing, 10(6):376{388, Jul. 1992.

L. M. J. Florack, B. M. ter Haar Romeny, J. J. Koenderink, and M. A.

Viergever. Cartesian di�erential invariants in scale-space. J. of Mathe-

matical Imaging and Vision, 3(4):327{348, 1993.

W. A. F�orstner. Image matching. In R. M. Haralick and L. G. Shapiro,

editors, Computer and Robot Vision, volume II, pages 289{378. Addison-

Wesley, 1993.

W. A. F�orstner and E. G�ulch. A fast operator for detection and precise

location of distinct points, corners and centers of circular features. In

Proc. Intercommission Workshop of the Int. Soc. for Photogrammetry

and Remote Sensing, Interlaken, Switzerland, 1987.

W. T. Freeman and E. H. Adelson. Steerable �lters for early vision, image

analysis and wavelet decomposition. In Proc. 3rd Int. Conf. on Computer

Vision, Osaka, Japan, Dec. 1990. IEEE Computer Society Press.

J. G�arding and T. Lindeberg. Direct computation of shape cues using scale-

adapted spatial derivative operators. Int. J. of Computer Vision, 17(2):

163{191, 1996.

R. M. Haralick. Ridges and valleys in digital images. Computer Vision,

Graphics, and Image Processing, 22:28{38, 1983.

B. K. P. Horn and B. G. Schunck. Determining optical 
ow. J. of Arti�cial

Intelligence, 17:185{204, 1981.

R. A. Hummel and R. Moniot. Reconstructions from zero-crossings in

scale-space. IEEE Trans. Acoustics, Speech and Signal Processing, 37

(12):2111{2130, 1989.

M. J�agersand. Saliency maps and attention selection in scale and spatial

coordinates: An information theoretic approach. In Proc. 5th Interna-

tional Conference on Computer Vision, pages 195{202, Cambridge, MA,

June 1995.

T. Kanade and M. Okutomi. A stereo matching algorithm with an adaptive

window: Theory and experiment. IEEE Trans. Pattern Analysis and

Machine Intell., 16(9):920{932, 1994.

L. Kitchen and A. Rosenfeld. Gray-level corner detection. Pattern Recog-

nition Letters, 1(2):95{102, 1982.



BIBLIOGRAPHY 39

J. J. Koenderink. The structure of images. Biological Cybernetics, 50:

363{370, 1984.

J. J. Koenderink. Solid Shape. MIT Press, Cambridge, Massachusetts,

1990.

J. J. Koenderink, A. Kaeppers, and A. J. van Doorn. Local operations:

The embodiment of geometry. In G. Orban and H.-H. Nagel, editors,

Arti�cial and Biological Vision Systems, pages 1{23, 1992.

J. J. Koenderink and W. Richards. Two-dimensional curvature operators.

J. of the Optical Society of America, 5:7:1136{1141, 1988.

J. J. Koenderink and A. J. van Doorn. Representation of local geometry

in the visual system. Biological Cybernetics, 55:367{375, 1987.

J. J. Koenderink and A. J. van Doorn. Receptive �eld families. Biological

Cybernetics, 63:291{298, 1990.

J. J. Koenderink and A. J. van Doorn. Generic neighborhood operators.

IEEE Trans. Pattern Analysis and Machine Intell., 14(6):597{605, Jun.

1992.

J. J. Koenderink and A. J. van Doorn. Two-plus-one-dimensional di�eren-

tial geometry. Pattern Recognition Letters, 15(5):439{444, 1994.

T. M. Koller, G. Gerig, G. Sz�ekely, and D. Dettwiler. Multiscale detection

of curvilinear structures in 2-D and 3-D image data. In Proc. 5th In-

ternational Conference on Computer Vision, pages 864{869, Cambridge,

MA, June 1995.

A. F. Korn. Toward a symbolic representation of intensity changes in

images. IEEE Trans. Pattern Analysis and Machine Intell., 10(5):610{

625, 1988.

T. Lindeberg. Scale-space for discrete signals. IEEE Trans. Pattern Anal-

ysis and Machine Intell., 12(3):234{254, Mar. 1990.

T. Lindeberg. Discrete Scale-Space Theory and the Scale-Space Primal

Sketch. Ph. D. dissertation, Dept. of Numerical Analysis and Comput-

ing Science, KTH, Stockholm, Sweden, May. 1991. ISRN KTH/NA/P-

-91/08--SE. An extended and revised version published as book "Scale-

Space Theory in Computer Vision" in The Kluwer International Series

in Engineering and Computer Science.



40 1 PRINCIPLES FOR AUTOMATIC SCALE SELECTION

T. Lindeberg. Detecting salient blob-like image structures and their scales

with a scale-space primal sketch: A method for focus-of-attention. Int.

J. of Computer Vision, 11(3):283{318, Dec. 1993a.

T. Lindeberg. Discrete derivative approximations with scale-space proper-

ties: A basis for low-level feature extraction. J. of Mathematical Imaging

and Vision, 3(4):349{376, Nov. 1993b.

T. Lindeberg. On scale selection for di�erential operators. In K. H.

K. A. H�gdra, B. Braathen, editor, Proc. 8th Scandinavian Conf. on

Image Analysis, pages 857{866, Troms�, Norway, May. 1993c. Norwe-

gian Society for Image Processing and Pattern Recognition.

T. Lindeberg. Junction detection with automatic selection of detection

scales and localization scales. In Proc. 1st International Conference on

Image Processing, volume I, pages 924{928, Austin, Texas, Nov. 1994a.

IEEE Computer Society Press.

T. Lindeberg. On the axiomatic foundations of linear scale-space: Combin-

ing semi-group structure with causality vs. scale invariance. Technical

Report ISRN KTH/NA/P--94/20--SE, Dept. of Numerical Analysis and

Computing Science, KTH, Stockholm, Sweden, Aug. 1994b. Extended

version to appear in J. Sporring and M. Nielsen and L. Florack and

P. Johansen (eds.) Gaussian Scale-Space Theory: Proc. PhD School on

Scale-Space Theory, Copenhagen, Denmark, Kluwer Academic Publish-

ers, May 1996.

T. Lindeberg. Scale-space theory: A basic tool for analysing structures

at di�erent scales. Journal of Applied Statistics, 21(2):225{270, 1994c.

Supplement Advances in Applied Statistics: Statistics and Images: 2 .

T. Lindeberg. Scale-Space Theory in Computer Vision. The Kluwer Inter-

national Series in Engineering and Computer Science. Kluwer Academic

Publishers, Dordrecht, Netherlands, 1994d.

T. Lindeberg. Direct estimation of aÆne deformations of brightness pat-

terns using visual front-end operators with automatic scale selection. In

Proc. 5th International Conference on Computer Vision, pages 134{141,

Cambridge, MA, June 1995.

T. Lindeberg. Feature detection with automatic scale selection. Techni-

cal Report ISRN KTH/NA/P--96/18--SE, Dept. of Numerical Analysis

and Computing Science, KTH, Stockholm, Sweden, May. 1996a. Inter-

national Journal of Computer Vision, vol. 30, no. 2, 1998. in press.



BIBLIOGRAPHY 41

T. Lindeberg. Edge detection and ridge detection with automatic scale

selection. Technical Report ISRN KTH/NA/P--96/06--SE, Dept. of Nu-

merical Analysis and Computing Science, KTH, Stockholm, Sweden, Jan.

1996b. International Journal of Computer Vision, vol. 30, no. 2, 1998.

in press.

T. Lindeberg. Edge detection and ridge detection with automatic scale se-

lection. In Proc. IEEE Comp. Soc. Conf. on Computer Vision and Pat-

tern Recognition, 1996, pages 465{470, San Francisco, California, June

1996c. IEEE Computer Society Press.

T. Lindeberg. A scale selection principle for estimating image deforma-

tions. Technical Report ISRN KTH/NA/P--96/16--SE, Dept. of Numer-

ical Analysis and Computing Science, KTH, Stockholm, Sweden, Apr.

1996d. Image and Vision Computing, (in press).

T. Lindeberg. Scale-space theory: A framework for handling image struc-

tures at multiple scales. In Proc. CERN School of Computing, pages 27{

38, Egmond aan Zee, The Netherlands, Sep. 1996e. Tech. Rep. CERN

96-08.

T. Lindeberg. Linear spatio-temporal scale-space. In ter Haar Romeny et

al., editor, Proc. 1st Int. Conf. on Scale-Space Theory in Computer Vi-

sion, Utrecht, The Netherlands, July 1997a. Springer Verlag, New York.

T. Lindeberg. On automatic selection of temporal scales in time-casual

scale-space. In G. Sommer and J. J. Koenderink, editors, Proc. AF-

PAC'97: Algebraic Frames for the Perception-Action Cycle, volume 1315

of Lecture Notes in Computer Science, pages 94{113, Kiel, Germany,

Sept. 1997b. Springer Verlag, Berlin.

T. Lindeberg and J. G�arding. Shape from texture from a multi-scale per-

spective. In H.-H. N. et. al., editor, Proc. 4th Int. Conf. on Computer

Vision, pages 683{691, Berlin, Germany, May. 1993. IEEE Computer

Society Press.

T. Lindeberg and J. G�arding. Shape-adapted smoothing in estimation of

3-D depth cues from aÆne distortions of local 2-D structure. Image and

Vision Computing, 15:415{434, 1997.

T. Lindeberg and M. Li. Segmentation and classi�cation of edges using

minimum description length approximation and complementary junction

cues. In G. Borgefors, editor, Proc. 9th Scandinavian Conference on

Image Analysis, pages 767{776, Uppsala, Sweden, June 1995. Swedish

Society for Automated Image Processing.



42 1 PRINCIPLES FOR AUTOMATIC SCALE SELECTION

T. Lindeberg and M. Li. Segmentation and classi�cation of edges using

minimum description length approximation and complementary junction

cues. Computer Vision and Image Understanding, 67(1):88{98, 1997.

T. Lindeberg and B. ter Haar Romeny. Linear scale-space I: Basic theory.

In B. ter Haar Romeny, editor, Geometry-Driven Di�usion in Computer

Vision, Series in Mathematical Imaging and Vision, pages 1{41. Kluwer

Academic Publishers, Dordrecht, Netherlands, 1994a.

T. Lindeberg and B. ter Haar Romeny. Linear scale-space II: Early visual

operations. In B. ter Haar Romeny, editor, Geometry-Driven Di�usion

in Computer Vision, Series in Mathematical Imaging and Vision, pages

43{77. Kluwer Academic Publishers, Dordrecht, Netherlands, 1994b.

B. D. Lukas and T. Kanade. An iterative image registration technique with

an application to stereo vision. In Image Understanding Workshop, 1981.

S. G. Mallat and W. L. Hwang. Singularity detection and processing with

wavelets. IEEE Trans. Information Theory, 38(2):617{643, 1992.

S. G. Mallat and S. Zhong. Characterization of signals from multi-scale

edges. IEEE Trans. Pattern Analysis and Machine Intell., 14(7):710{

723, 1992.

D. Marr. Vision. W.H. Freeman, New York, 1982.

W. Niessen and R. Maas. Optic 
ow and stereo. In J. Sporring, M. Nielsen,

L. Florack, and P. Johansen, editors, Gaussian Scale-Space Theory: Proc.

PhD School on Scale-Space Theory, Copenhagen, Denmark, May. 1996.

Kluwer Academic Publishers.

E. J. Pauwels, P. Fiddelaers, T. Moons, and L. J. van Gool. An extended

class of scale-invariant and recursive scale-space �lters. IEEE Trans.

Pattern Analysis and Machine Intell., 17(7):691{701, 1995.

P. Perona. Steerable-scalable kernels for edge detection and junction analy-

sis. In Proc. 2nd European Conf. on Computer Vision, pages 3{18, Santa

Margherita Ligure, Italy, May. 1992.

S. M. Pizer, C. A. Burbeck, J. M. Coggins, D. S. Fritsch, and B. S. Morse.

Object shape before boundary shape: Scale-space medial axis. J. of

Mathematical Imaging and Vision, 4:303{313, 1994.

A. R. Rao and B. G. Schunk. Computing oriented texture �elds. CVGIP:

Graphical Models and Image Processing, 53(2):157{185, Mar. 1991.



BIBLIOGRAPHY 43

J. Sporring, M. Nielsen, L. Florack, and P. Johansen, editors. Gaussian

Scale-Space Theory: Proc. PhD School on Scale-Space Theory. Series in

Mathematical Imaging and Vision. Kluwer Academic Publishers, Copen-

hagen, Denmark, May 1996.

H. Voorhees and T. Poggio. Detecting textons and texture boundaries in

natural images. In Proc. 1st Int. Conf. on Computer Vision, London,

England, 1987.

K. Wiltschi, T. Lindeberg, and A. Pinz. Classi�cation of carbide distribu-

tions using scale selection and directional distributions. Technical Report

ISRN KTH/NA/P--97/10--SE, Dept. of Numerical Analysis and Com-

puting Science, KTH, Stockholm, Sweden, 1997a. Shortened version in

Proc. 4th International Conference on Image Processing, (Santa Barbara,

California), vol. II, pp. 122{125, IEEE, Oct. 1997.

K. Wiltschi, A. Pinz, and T. Lindeberg. Classi�cation of carbide distri-

butions using scale selection and directional distributions. In Proc. 4th

International Conference on Image Processing, volume II, pages 122{125,

Santa Barbara, California, Oct. 1997b. IEEE.

Y. Yacoob and L. S. Davis. Estimating image motion using temporal multi-

scale models of 
ow and acceleration. In M. Shah and R. Jain, editors,

Motion-Based Recognition. Kluwer Academic Publishers, 1997.

R. A. Young. The Gaussian derivative theory of spatial vision: Analysis

of cortical cell receptive �eld line-weighting pro�les. Technical Report

GMR-4920, Computer Science Department, General Motors Research

Lab., Warren, Michigan, 1985.

R. A. Young. The Gaussian derivative model for spatial vision: I. Retinal

mechanisms. Spatial Vision, 2:273{293, 1987.

A. L. Yuille and T. A. Poggio. Scaling theorems for zero-crossings. IEEE

Trans. Pattern Analysis and Machine Intell., 8:15{25, 1986.

W. Zhang and F. Bergholm. An extension of Marr's signature based edge

classi�cation and other methods for determination of di�useness and

height of edges, as well as line width. In H.-H. N. et. al., editor, Proc. 4th

Int. Conf. on Computer Vision, pages 183{191, Berlin, Germany, May.

1993. IEEE Computer Society Press.



Index

blob detection, 23

coarse-to-�ne matching, 32

consistency measure

for corner detection, 29

for stereo matching, 32

corner detection, 24

corner localization, 28

di�erential invariant, 7

for quasi quadrature, 27

homogeneous, 15

scaling property, 15

di�erential stereo matching, 31

di�use step edge, 17, 24

di�usion equation, 4

directional derivative, 6

in preferred coordinate sys-

tem, 7

edge detection, 17

edge strength measure, 17, 27

edge surface, 17

feature detection, 16

feature localization, 27


ow estimation, 31

frequency estimation, 26

Gaussian kernel, 4

integration scale parameter, 10

invariance, 7

Laplacian operator, 4, 23

local scale parameter, 10

motion constraint equation, 31

N-jet representation, 5

non-enhancement property of lo-

cal extrema, 12

non-maximum suppression, 17

normalized derivative, 13, 26

scaling property, 15

normalized residual, 29, 32

power spectrum

self-similar, 16

quadrature �lter pair, 26

ridge detection, 21

ridge strength measure, 21, 27

ridge surface, 21

scale selection

for feature detection, 14

for feature localization, 29

for stereo matching, 32

scale-space, 4

scale-space derivative, 5

scale-space edge, 17

scale-space extrema, 23

scale-space representation, 4

scale-space ridge, 21

scale-space theory, 4

spectral moment, 9, 10, 32

steerable �lter, 6

stereo matching, 31

44



INDEX 45

visual front-end, 10


