
U.C. Berkeley — CS270: Algorithms Lecture 6
Professor Vazirani and Professor Rao Feb 02,2012
Lecturer: Umesh Vazirani Scribe: Anupam Last revised March 1, 2012

Lecture 6

1 Boosting

Consider the problem of learning the concept class of hyperplanes. We have m labeled
examples (xi, li) with li ∈ {±1} and wish to find a hyperplane such that li = sgn(h.xi) for
(1− ν) fraction of the points. Another way of to say this is that we want a hypothesis with
error ν with respect to the uniform distribution. In practice, it is often easier to come up
with good weak classifiers i.e. hyperplanes that are correct more often than wrong. How to
combine several weak classifiers to get a strong one?

We formalize the problem as follows: a weak learner is an algorithm takes as input a
distribution D on examples and produces a weak classifier h(·), such that Prx∼D[h(x) =
l(x)] ≥ 1

2 + γ. We wish to find a strong classifier h′ that is correct on 1 − ν fraction of
the training set, that is Prx∼D[h′(x) = l(x)] ≥ 1 − ν. The AdaBoost algorithm uses the
weak learner to find a strong classifier, it is an extremely influential application of the
multiplicative weights framework to learning.

1.1 Adaboost

The algorithm can be formulated as a two player game where the row player plays examples
(xi, li) and the column player plays hypotheses h ∈ H. The loss for the row player is 1 if
h(x) = l(x) and 0 otherwise. The row player suffers a loss if the example is classified
correctly, so the row player wants to play examples that fool the hypothesis played by the
column player.

The algorithm repeats the following steps for T = 2
γ2

log 1
µ rounds:

1. The row player follows the experts algorithm starting with a uniform distribution on the
examples.
2. The column player invokes the weak learner on the row player’s distribution to produce
a hypothesis with expected payoff more than 1/2 + γ.
3. The output hypothesis h(x) is the majority of h1(x), h2(x), · · · , hT (x).

Claim 1
If the multiplicative factor ε for the experts algorithm equals γ, the majority hypothesis
correctly classifies 1− µ fraction of the examples after T = 2

γ2
log 1

µ rounds.

Proof: The proof modifies the analysis of the experts algorithm for lecture 4, there we
observed that W (T) ≥ (1− ε)L∗

as the total weight is at least the weight of the best expert.
Define Sbad be the set of examples misclassified by the majority hypothesis, examples

in Sbad are good experts as they do not suffer a loss more than T/2. Here we observe that
the total weight W (T) is at least the weight of the experts in Sbad,

Notes for Lecture 6: Feb 02,2012 2

|Sbad|(1− ε)T/2 ≤W (T). (1)

The upper bound in the analysis of the experts algorithm was W (t+1) ≤ (1−εLt)W (t),
applying the inequality (1 − εx) ≤ e−εx valid for all x ∈ R we have the upper bound
W (T) ≤W (0)e−εL. The column player uses the weak learner to ensure that the row player
loses at least 1

2 + γ in each round, hence

W (T) ≤ e−εLn ≤ e−ε(
1
2
+γ)Tn (2)

Combining the upper and lower bounds, using ε = γ and taking logarithms we have,

ln

(
|Sbad|
n

)
+
T

2
ln(1− γ) ≤ −γT

(
1

2
+ γ

)
(3)

Using the approximation −γ − γ2 ≤ ln(1− γ) from lecture 4 we have,

ln

(
|Sbad|
n

)
≤ −γ

2T

2
= logµ (4)

The fraction of mistakes is at most µ, hence the majority hypothesis classifies at least 1−µ
fraction of the examples correctly.

2

2 Congestion minimization in the experts framework

Recall the congestion minimization problem from lecture 1: given graph G = (V,E) and
pairs of vertices (si, ti), i ∈ [k] find paths connecting (si, ti) such that the maximum con-
gestion over an edge is minimized. Using the experts framework, we will find a flow that
approximately minimizes congestion, the flow can be rounded off probabilistically to obtain
approximately optimal paths.

The analysis of the expert algorithm with gains from lecture 4 shows that if the gains

belong to [0, ρ], then for the update rule wi(t+1)→ (1+ε)
gi
ρ wi(t) the gain G of the experts

algorithm is close to the gain G∗ for the best expert,

G ≥ (1− ε)G∗ − ρ log n

ε
(5)

2.1 The toll congestion game

The toll player plays an e ∈ E and the routing player plays a routing r between (si, ti).
The gain for the toll player is c(e, r), the congestion on the edge e in routing r.

Mixed strategies for the routing player are probability distribution on routings (si, ti),
notice that the mixed strategies are flows. The best response to a flow f is to play the edge
with maximum congestion under f . The value of the game is C∗ = minf maxe c(e, f), the
optimal congestion over (si, ti) flows.

A mixed strategy for the toll player is a probability distribution we on the edges, each
toll strategy induces a metric on the graph where the length of edge e is equal to we. The

Notes for Lecture 6: Feb 02,2012 3

expected payoff for routing r against toll strategy w is the sum of the lengths of the (si, ti)
paths in r under the toll metric,

A(r, w) =
∑
e

wec(e, r) =
∑

pi∼(si,ti)

w(pi) (6)

The best response to a toll strategy w routes along shortest (si, ti) paths in the toll metric.
The number of strategies for the routing player is exponential, but the best response to a
given a toll strategy can be found efficiently by computing shortest paths in the toll metric.

2.2 Congestion minimization algorithm

The algorithm for congestion minimization repeats the following steps for T = k logm
ε2

rounds:

1. The toll player follows the experts algorithm, the initial weights are we = 1, the update
rule is wi(t+ 1)→ (1 + ε)g

t
i/kwi(t).

2. The routing player plays the optimal response to the toll player’s strategy, which is to
route along the shortest (si, ti) paths under the metric w.
3. The output of the algorithm is the flow f = 1

T

∑
t f(t) obtained by averaging the

responses of the routing player.

The maximum congestion on an edge for the flow f is denoted by cmax, the following
claim shows that cmax is within O(kε) of the optimal congestion over flows,

Claim 2
The value of cmax is within O(kε) of the optimal congestion C∗ for T = k logm

ε2
.

Proof: Let G be the average gain for the experts algorithm over T rounds. The gain for
every round is less than the value of the game C∗ as the toll player plays first and then the
routing player gets to choose the best response. The gain for the best expert in retrospect
against f =

∑
f(i)/T is cmax. The value C∗ is less than cmax as in this case the toll player

gets to choose a best response.

G C∗ cmax

(1 + cmax)ε

The analysis of the experts algorithm (5) bounds the gap between cmax and G,

G ≥ cmax(1− ε)− k logm

εT
(7)

Substitute T = k logm
ε2

to obtain cmax − C∗ ≤ cmax −G ≤ (1 + cmax)ε = O(kε).
2

To approximate C∗ within a multiplicative factor (1 + ε), the running time of the algo-
rithm is O(k2m log n) as O(k logm) rounds are required and each round involves computing
k shortest paths which can be done in time O(km), say using breadth first search.

Notes for Lecture 6: Feb 02,2012 4

2.3 Rounding

The algorithm produces an approximately optimal flow which needs to be rounded to a
routing. The flow f produced by the experts algorithm is f =

∑
fi/T , where each fi is a

routing as it is the best response to some toll strategy. For each pair of nodes (si, ti) there
are a total of T paths available and the rounding strategy is to choose one of these paths
uniformly at random.

If edge e has congestion ce in the flow f then the number of paths passing through e
can be bounded by,

|Pe| ≤ ceT

The indicator random variable Xi = 1 if the path through (si, ti) in the rounded strategy
goes through e. The expected congestion for the edge e for the randomized strategy is,

E[
∑
i∈[k]

Xi] =
∑
i

|Pe,i|
T

=
Pe
T
≤ ce (8)

The expected congestion for the randomized rounding procedure is at most the congestion
for the original flow. The random variables Xi are defined to be independent so that we use
concentration bounds and argue that with high probability the rounding procedure finds a
routing with low congestion.

