
U.C. Berkeley — CS270: Algorithms Lecture 22
Professor Vazirani and Professor Rao Scribe: Anupam

Last revised

Lecture 22

1 Semi Definite Programming

Semi-definite programming is a generalization of linear programming that has been found
to be useful for designing better approximation algorithms for combinatorial optimization
problems. We will see examples of semi definite programs, discuss the reason SDP s can be
solved in polynomial time and present the classical Goemans Williamson algorithm for the
Max-cut problem.

Recall that a symmetric matrix A is said to be positive semidefinite (denoted as A � 0)
if all the eigenvalues are non negative, or equivalently if xTAx ≥ 0 for all x ∈ Rn. The
decomposition of A in the spectral basis shows that every positive semidefinite matrix has
a square root,

A =
∑
i

λiviv
T
i ⇒ A1/2 =

∑
i

√
λiviv

T
i (1)

The existence of the square root shows that A can be written as BTB, in general there are
several possible B such that A = BTB. A matrix that can be written as BTB is positive
semidefinite as xTBTBx = |Bx|2 ≥ 0. Instead of the square root, it is convenient to work
with the Cholesky decomposition A = BTB where B is upper triangular, this decomposition
is unique and is computed using Gaussian elimination.

Interpreting the decomposition geometrically, the entry aij of a positive semidefinite
matrix can be expressed as an inner product vi.vj for some vectors vi ∈ Rn. A semi-definite
program optimizes a linear objective function over the entries of a positive semidefinite
matrix, the constraints are linear functions of the matrix entries,

max A.C

A.Xi ≥ bi

A � 0 (2)

The matrix dot product A.X in the representation of the SDP is the inner product between
matrix entries

∑
ij aijxij , the matrix inner product is also equal to Tr(AX) the trace of the

matrix product.
Why does SDP generalize LP? A linear program is a special instance of the SDP in

(2) where additional constraints are added to ensure that the non diagonal entries of A are
equal to 0.

Solving an SDP in polynomial time: Consider the set of all positive semidefinite matri-
ces as a subset of Rn2

, if the matrices A,B are positive semidefinite then αA + βB is also
positive semidefinite for α, β > 0. The set of positive semidefinite matrices is therefore a
convex cone.

The ellipsoid algorithm is a general purpose algorithm to optimize a linear function
w.x over a convex region C. The strategy is to first use the binary search trick to reduce

Notes for Lecture 22: Scribe: Anupam 2

optimization to feasibility testing, in order to find the optimum value of w.x over C we
check if the intersection of C with the hyperplane w.x = α is non empty.

The feasibility problem is solved by finding an ellipsoid enclosing C ∩ (w.x = α), the
initial ellipsoid is the projection of an ellipsoid enclosing C onto the hyperplane w.x = α.
If the ellipsoid contains a point from C the value α is feasible. In each iterative step we
check if the center of the current ellipsoid belongs to C, if not then we can find a hyperplane
through the center of the ellipsoid such that C is on one side of the hyperplane. The search
problem therefore reduces to checking that ‘half’ the ellipsoid is non empty.

It can be shown that a ‘half’ ellipsoid can be enclosed in a circumscribing ellipsoid of
volume V (1−1/poly(n)) where V is the volume of the original ellipsoid and n is the problem
size. We repeat the algorithm with the circumscribing ellipsoid, within poly(n) iterations
the feasibility problem is solved as the volume of the ellipsoid approaches 0.

The ellipsoid algorithm is not practical to implement, but shows that SDP s can be
solved in polynomial time. Faster SDP solvers combine the ellipsoid method with dimension
reduction, also a version of the experts algorithm can be used to approximately solve SDP s.

1.1 The Maximum Cut problem

The max cut problem is to partition a graph G(V,E) into two pieces (S, S) such that the
weight of the edges cut is maximized. If OPT is the weight of the maximum cut, there
is a simple randomized algorithm that produces cuts with weight at least OPT/2. The
algorithm constructs set S by independently adding vertices v ∈ G to S with probability
1/2. The indicator random variable Ie = 1 if the edge e is cut and 0 otherwise, by linearity
of expectation we have,

E[w(S, S)] =
∑
e

E[w(e)Ie] =
∑
e

we
2
≥ OPT

2
(3)

The expected weight of the cut produced by the randomized algorithm is half the total
weight, if the variance is large cuts with high weight would be produced frequently. The
variance can be shown to be small for random graphs, also it is easy to derandomize the
algorithm.

The simple algorithm was the best known for a long time, in order to achieve an im-
provement let us write the max cut problem as an integer program,

max
∑

(i,j)∈E

wij
1− xi.xj

2
∀i, xi ∈ {1,−1} (4)

As the integer program is NP hard to solve exactly we look for relaxations of the program
that are easier to solve. Instead of one dimensional unit vectors, optimizing over vectors in
n dimensional space we have the program,

max
∑

(i,j)∈E

wij
1− vi.vj

2

∀i, vi ∈ Rn, |vi| = 1 (5)

Notes for Lecture 22: Scribe: Anupam 3

The program is a semi definite program as the objective function and constraints are linear
in the inner products vi.vj . The optimal value of the program is denoted by V P (OPT), the
solution vectors v1, v2, · · · , vn ∈ Rn can be found by computing the Cholesky decomposition
of the matrix A output by the SDP solver.

As an example, let us consider the 5 cycle, the size of the maximum cut is 4 while the
optimal solution to the vector program is two dimensional and corresponds to the embedding
of the five star. The optimum value for the relaxed program is 5(1−cos(4π/5)

2 = 4.52.
The one dimensional solution corresponding to the maximum cuts is a solution to the

relaxed problem, the value V P (OPT) is therefore greater than OPT . We will show that
starting with a solution v1, v2, · · · , vn to the vector program a cut with value 0.878V P (OPT)
can be found,

0.878V P (OPT) ≤ OPT ≤ V P (OPT) (6)

Select a random hyperplane w.x = 0 through the origin and define S := {i | w.vi ≥ 0} to
be the set of points that lie on one side of the hyperplane.

Claim 1
The expected weight of the cut (S, S) is at least 0.878V P (OPT).

Proof: The analysis of the rounding procedure is local, we consider the contributions of
the edge (i, j) to the SDP solution and to the randomized cut. If the angle between vectors
vi, vj is θ then restricting ourselves to the 2-dimensional plane spanned by vi and vj it
follows that the probability that the edge (i, j) ∈ (S, S) is θ

π .
The contribution of edge (i, j) to the objective value of the vector program is 1−cos θ

2 .
The ratio of the expected weight of the cut (S, S) to the objective value of the semi-definite
program is given by,

E[w(S, S)]
V P (OPT)

=
∑
e

2weθ
we(1− cos(θ))

≥ min
θ∈[0,π]

2θ
1− cos θ

= 0.878 (7)

The minimum value of 2θ
1−cos θ over angles θ ∈ [0, π] is attained for θ ≈ 137.6◦ and is equal

to 0.878. 2

Semidefinite programming therefore provides a 0.878 approximation for max cut, it
might seem that the number is not significant but if the unique games conjecture in com-
plexity theory is true then it is not possible to obtain a better approximation algorithm.
The above edge by edge of the SDP rounding procedure is optimal, a tight example can be
constructed by taking several n dimensional unit vectors and adding the edge (i, j) if the
angle between vi and vj is 137.6◦ ± ε.

